First-principles investigation on the interlayer doping of SnSe2 bilayer

  • Tao Zhou
  • DanMei Zhou
  • Yanqun Wang
  • Jinyan DuEmail author
  • YuCheng HuangEmail author
Research Paper


Using density functional theory calculations, we systematically investigated the effects of numbers and types of transition metals (TM) on the magnetic property of SnSe2 bilayer nanosheet. Our results revealed that, when one TM is introduced into the interlayer, the magnetic moment induced by the Co and Ni is tiny while it is largely strengthened with the doping of V, Cr, Mn, and Fe. When two TMs are inserted into the interlayer, V and Cr make the system change into a weak antiferromagnetism (AFM) state while Mn-, Fe-, Co-doped systems display a weak ferromagnetism (FM) ground state. These FM states have the magnetic moments which double those of the one TM–doping systems. With the TM numbers further increasing to four, the robust AFM and FM features appear with the doping of Fe and Mn, respectively. Ni cannot induce any magnetism whatever the numbers of Ni are filling in. Interestingly, with the increase of the numbers of dopants, transitions from FM to AFM and AFM to FM are predicted to be realized on Fe-SnSe2 and Cr-SnSe2 systems, respectively. This kind of transition may be important for the applications in spintronic devices.

Graphical Abstract


Density functional theory Interlayer doping Ferromagnetism Antiferromagnetism SnSe2 Spintronics application Modeling and simulation 



The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of University of Science and Technology of China.

Funding information

This work was supported by the National Natural Science Foundation of China Nos. 21705003 (J. Du) and 21573002 (Y. Huang).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRefGoogle Scholar
  2. Botello-Méndez AR, López-Urías F, Terrones M, Terrones H (2008) Magnetic behavior in zinc oxide zigzag nanoribbons. Nano Lett 8(6):1562–1565CrossRefGoogle Scholar
  3. Chen W, Li Y, Yu G, Li C-Z, Zhang SB, Zhou Z, Chen Z (2010) Hydrogenation: a simple approach to realize semiconductor− half-metal− metal transition in boron nitride nanoribbons. J Am Chem Soc 132(5):1699–1705CrossRefGoogle Scholar
  4. Choi J, Jin J, Jung IG, Kim JM, Kim HJ, Son SU (2011) SnSe2 nanoplate–graphene composites as anode materials for lithium ion batteries. Chem Commun (Camb) 47(18):5241–5243CrossRefGoogle Scholar
  5. Cui P, Choi J-H, Chen W, Zeng J, Shih C-K, Li Z, Zhang Z (2017) Contrasting structural reconstructions, electronic properties, and magnetic orderings along different edges of zigzag transition metal dichalcogenide nanoribbons. Nano Lett 17(2):1097–1101CrossRefGoogle Scholar
  6. Domingo G, Itoga R, Kannewurf C (1966) Fundamental optical absorption in SnS2 and SnSe2. Phys Rev 143(2):536–541CrossRefGoogle Scholar
  7. Dongwei M, Zhansheng L, Weiwei J, Yanan T (2012) First-principles studies of BN sheets with absorbed transition metal single atoms or dimers: stabilities, electronic structures, and magnetic properties. J Phys Condens Matter 24(14):145501 CrossRefGoogle Scholar
  8. Dudarev S, Botton G, Savrasov S, Humphreys C, Sutton A (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+ U study. Phys Rev B 57(3):1505–1509CrossRefGoogle Scholar
  9. Evans BL, Hazelwood RA (1969) Optical and electrical properties of SnSe 2. J Phys D Appl Phys 2(11):1507–1516 CrossRefGoogle Scholar
  10. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36(3):354–360. CrossRefGoogle Scholar
  11. Huang Y, Ling C, Fang Z, Wang S (2014a) Width-and edge-dependent magnetic properties, electronic structures, and stability of SnSe2 nanoribbons. Phys E 59:102–106CrossRefGoogle Scholar
  12. Huang Y, Ling C, Liu H, Wang S (2014b) Edge-, width- and strain-dependent semiconductor-metal transition in SnSe nanoribbons. RSC Adv 4(14):6933–6938. CrossRefGoogle Scholar
  13. Huang Y, Ling C, Liu H, Wang S, Geng B (2014c) Versatile electronic and magnetic properties of SnSe2 nanostructures induced by the strain. J Phys Chem C 118(17):9251–9260CrossRefGoogle Scholar
  14. Huang Y, Zhou D, Chen X, Liu H, Wang C, Wang S (2016) First-principles study on doping of SnSe2 monolayers. ChemPhysChem 17(3):375–379. CrossRefGoogle Scholar
  15. Huang Z, Peng X, Yang H, He C, Xue L, Hao G, Zhang C, Liu W, Qi X, Zhong J (2013) The structural, electronic and magnetic properties of bi-layered MoS2 with transition-metals doped in the interlayer. RSC Adv 3(31):12939–12944. CrossRefGoogle Scholar
  16. Kang B, Ai H, Lee JY (2017) Single-atom vacancy induced changes in electronic and magnetic properties of graphyne. Carbon 116:113–119CrossRefGoogle Scholar
  17. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRefGoogle Scholar
  18. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRefGoogle Scholar
  19. Li CH, Kioseoglou G, Petrou A, Korkusinski M, Hawrylak P, Jonker BT (2013) Highly polarized emission from electrical spin injection into an InGaAs quantum well with free carriers. Appl Phys Lett 103(21):212403. CrossRefGoogle Scholar
  20. Ma Y, Dai Y, Guo M, Niu C, Yu L, Huang B (2011) Strain-induced magnetic transitions in half-fluorinated single layers of BN, GaN and graphene. Nanoscale 3(5):2301–2306CrossRefGoogle Scholar
  21. Ma Y, Dai Y, Guo M, Niu C, Zhu Y, Huang B (2012) Evidence of the existence of magnetism in pristine VX2 monolayers (X= S, Se) and their strain-induced tunable magnetic properties. ACS Nano 6(2):1695–1701CrossRefGoogle Scholar
  22. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192CrossRefGoogle Scholar
  23. Palosz B, Salje E (1989) Lattice parameters and spontaneous strain in AX2 polytypes: CdI2, PbI2 SnS2 and SnSe2. J Appl Crystallogr 22(6):622–623CrossRefGoogle Scholar
  24. Perdew JP, Chevary J, Vosko S, Jackson KA, Pederson MR, Singh D et al (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46(11):6671–6687CrossRefGoogle Scholar
  25. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45(23):13244–13249CrossRefGoogle Scholar
  26. Saab M, Raybaud P (2016) Tuning the magnetic properties of MoS2 single nanolayers by 3d metals edge doping. J Phys Chem C 120(19):10691–10697CrossRefGoogle Scholar
  27. Schlaf R, Pettenkofer C, Jaegermann W (1999) Band lineup of a SnS2/SnSe2/SnS2 semiconductor quantum well structure prepared by van der Waals epitaxy. J Appl Phys 85(9):6550–6556. CrossRefGoogle Scholar
  28. Shi H, Pan H, Zhang Y-W, Yakobson BI (2013) Strong ferromagnetism in hydrogenated monolayer MoS2 tuned by strain. Phys Rev B 88(20):205305CrossRefGoogle Scholar
  29. Soldat H, Li M, Gerhardt NC, Hofmann MR, Ludwig A, Ebbing A, Reuter D, Wieck AD, Stromberg F, Keune W, Wende H (2011) Room temperature spin relaxation length in spin light-emitting diodes. Appl Phys Lett 99(5):051102. CrossRefGoogle Scholar
  30. Wang Q, Yu W, Fu X, Qiao C, Xia C, Jia Y (2016a) Electronic and magnetic properties of SnSe monolayers doped by Ga, In, As, and Sb: a first-principles study. Phys Chem Chem Phys 18(11):8158–8164CrossRefGoogle Scholar
  31. Wang RY, Caldwell MA, Jeyasingh RGD, Aloni S, Shelby RM, Wong H-SP, Milliron DJ (2011) Electronic and optical switching of solution-phase deposited SnSe2 phase change memory material. J Appl Phys 109:113506CrossRefGoogle Scholar
  32. Wang X-L, Li W, Wang T-X, Dai X-Q (2016b) Modulation of magnetic properties of bilayer SnSe with transition-metals doping in the interlayer. Phys E 75:106–111. CrossRefGoogle Scholar
  33. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, Von Molnar S, Roukes ML et al (2001) Spintronics: a spin-based electronics vision for the future. Science 294(5546):1488–1495CrossRefGoogle Scholar
  34. Wyckoff RWG (1960) Crystal structures. Interscience Publishers, New York, vol 1Google Scholar
  35. Xia C, Peng Y, Zhang H, Wang T, Wei S, Jia Y (2014) The characteristics of n-and p-type dopants in SnS2 monolayer nanosheets. Phys Chem Chem Phys 16(36):19674–19680CrossRefGoogle Scholar
  36. Yazyev OV, Helm L (2007) Defect-induced magnetism in graphene. Phys Rev B 75(12):125408CrossRefGoogle Scholar
  37. Yuliang M, Jianxin Z (2008) Structural, electronic and magnetic properties of manganese doping in the upper layer of bilayer graphene. Nanotechnology 19(20):205708 CrossRefGoogle Scholar
  38. Zeng J, Liu E, Fu Y, Chen Z, Pan C, Wang C, Wang M, Wang Y, Xu K, Cai S, Yan X, Wang Y, Liu X, Wang P, Liang SJ, Cui Y, Hwang HY, Yuan H, Miao F (2018) Gate-induced interfacial superconductivity in 1T-SnSe2. Nano Lett 18(2):1410–1415. CrossRefGoogle Scholar
  39. Zhao C, Jin C, Wu J, Ji W (2016) Magnetism in molybdenum disulphide monolayer with sulfur substituted by 3d transition metals. J Appl Phys 120(14):144305CrossRefGoogle Scholar
  40. Zhou X, Gan L, Tian W, Zhang Q, Jin S, Li H, Bando Y, Golberg D, Zhai T (2015) Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv Mater 27(48):8035–8041. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.College of Chemistry and Material Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based MaterialsAnhui Normal UniversityWuhuPeople’s Republic of China
  2. 2.College of Chemistry and Environmental EngineeringYangtze UniversityJinzhouChina

Personalised recommendations