Electron transport through double-walled carbon nanotube quantum dots

  • Saurabh SrivastavaEmail author
  • Brijesh Kumar Mishra
Research Paper


Electron transport through double-walled carbon nanotube quantum dots (DWCNT-QD) was calculated using full valence description of the electronic structure. Rolling pin model was used to measure the electron transport through both the walls of the DWCNT-QD. Three combinations of metallic (M) and zigzag semiconductor (S) nanotubes, i.e., M@S, S@M, and S@S, were studied for various diameters, and the corresponding IV curves were obtained using the Landauer method. The transmission through the nanotubes was calculated using elastic scattering quantum chemistry (ESQC) method. A significant difference of 0.5 to 1.5 μA in the current through the two walls of the DWCNT was found for the (4, 4)@(10, 9) and (5, 4)@(10, 9). In all other cases, the behavior of both the tubes in a DWCNT-QD was very similar to that of the corresponding single-walled carbon nanotube quantum dots (SWCNT-QD). The intermixing and correlation of the electronic states of the inner and outer shells of the DWCNTs responsible for such results were analyzed and discussed.


Electron transport Quantum dots Carbon nanotubes Molecular electronics ESQC 



SS thanks the computational facilities at the IIIT Bangalore to carry out the calculations. BKM acknowledges the SERB, Government of India, for the fund received (SERB-767), which enabled the execution of this work. We thank Professor Christian Joachim (CEMES, CNRS) for his valuable discussions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2018_4398_MOESM1_ESM.pdf (1.3 mb)
captions of movies (PDF 1.32 MB)


  1. Aharonov Y, Bohm D (1959) Significance of electromagnetic potentials in the quantum theory. Phys Rev 115:485–491CrossRefGoogle Scholar
  2. Ajayan PM, Iijima S (1991) Capillarity-induced filling of carbon nanotubes. Nature 361:333–334CrossRefGoogle Scholar
  3. Ajayan PM, Ebbesen TW, Ichihashi T, Iijima S, Tanigaki K, Hiura H (1993) Opening carbon nanotubes with oxygen and implications for filling. Nature 362:522–525CrossRefGoogle Scholar
  4. Bachtold A, Strunk C, Salvetat JP, Bonard JM, Forró L, Nussbaumer T, Schönenberger C (1999) Aharonov-bohm oscillations in carbon nanotubes. Nature 397:673CrossRefGoogle Scholar
  5. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192CrossRefGoogle Scholar
  6. Bandaru PR, Daraio C, Jin S, Rao AM (2005) Novel electrical switching behaviour and logic in carbon nanotube y-junctions. Nat Mater 4:663CrossRefGoogle Scholar
  7. Bourlon B, Miko C, Forro L, Glattli D, Bachtold A (2004) Determination of the intershell conductance in multiwalled carbon nanotubes. Phys Rev Lett 93:176,806CrossRefGoogle Scholar
  8. Buttiker M, Y Imry Y, Landauer R, Pinhas S (1985) Generalized many-channel conductance formula with application to small rings. Phys Rev B 31:6207–6215CrossRefGoogle Scholar
  9. Collins PG, Avouris P (2002) Multishell conduction in multiwalled carbon nanotubes. Appl Phys A 74:329–332CrossRefGoogle Scholar
  10. Collins PG, Hersam M, Arnold M, Martel R, Avouris P (2001) Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys Rev Lett 86:3128CrossRefGoogle Scholar
  11. Doumergue P, Pizzagalli L, Joachim C, Altibelli A, Baratoff A (1999) Conductance of a finite missing hydrogen atomic line on si(001)-(2x1)-h. Phys Rev B 59:15,910–15,916CrossRefGoogle Scholar
  12. Fujiwara A, Tomiyama K, Suematsu H (1999) Quantum interference of electrons in multiwall carbon nanotubes. Phys Rev B 60:13,492CrossRefGoogle Scholar
  13. Fujisawa K, Kim HJ, Go SH, Muramatsu H, Hayashi T, Endo M, Hirschmann TC, Dresselhaus MS, Kim YA, Araujo PT (2016) A review of double-walled and triple-walled carbon nanotube synthesis and applications. Appl Sci 6:109CrossRefGoogle Scholar
  14. Ghedjatti A, Magnin Y, Fossard F, Wang G, Amara H, Flahaut E, Lauret JS, Loiseau A (2017) Structural properties of double-walled carbon nanotubes driven by mechanical interlayer coupling. arXiv:1701.05832
  15. Hamada N, Sawada S, Oshiyama A (1992) New one-dimensional conductors: graphitic microtubules. Phys Rev Lett 68:1579CrossRefGoogle Scholar
  16. Hasan T, Sun Z, Tan PH, Popa D, Flahaut E, Kelleher EJR, Bonaccorso F, Wang F, Jiang Z, Torrisi F, Privitera G, Nicolosi V, Ferrari AC (2014) Double-wall carbon nanotubes for wide-band, ultrafast pulse generation. ACS Nano 8:4836–4847CrossRefGoogle Scholar
  17. Hashimoto A, Suenaga K, Urita K, Shimada T, Sugai T, Bandow S, Shinohara H, Iijima S (2005) Atomic correlation between adjacent graphene layers in double-wall carbon nanotubes. Phys Rev Lett 94:045,504CrossRefGoogle Scholar
  18. Hoffmann R (1963) An extended hückel theory. I. Hydrocarbons. J Chem Phys 39:1397–1412CrossRefGoogle Scholar
  19. Ijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  20. Jarosz PR, Shaukat A, Schauerman CM, Cress CD, Kladitis PE, Ridgley RD, Landi BJ (2012) High-performance, lightweight coaxial cable from carbon nanotube conductors. ACS Appl Mater Interfaces 4:1103–1109CrossRefGoogle Scholar
  21. Kociak M, Suenaga K, Hirahara K, Saito Y, Nakahira T, Iijima S (2002) Linking chiral indices and transport properties of double-walled carbon nanotubes. Phys Rev Lett 89:155,501CrossRefGoogle Scholar
  22. Latgé A, Grimm D, Ferreira MS (2006) Magnetic field effvects of double-walled carbon nanotubes. Braz J Phys 36:898–901CrossRefGoogle Scholar
  23. Li J, Ye Q, Cassell A, Ng HT, Stevens R, Han J, Meyyappan M (2003) Bottom-up approach for carbon nanotube interconnects. Appl Phys Lett 82:2491CrossRefGoogle Scholar
  24. Li S, Yu Z, Yen SF, Tang WC, Burke PJ (2004) Carbon nanotube transistor operation at 2.6 ghz. Nano Lett 4:753CrossRefGoogle Scholar
  25. Liu K, Wang W, Xu Z, Bai X, Wang E, Yao Y, Zhang J, Liu Z (2009) Chirality-dependent transport properties of double-walled nanotubes measured in situ on their field-effect transistors. J Am Chem Soc 131:62–63CrossRefGoogle Scholar
  26. Liu K, Hong X, Wu M, Xiao F, Wang W, Bai X, Ager JW, Aloni S, Zettl A, Wang E, Wang F (2013) Quantum-coupled radial-breathing oscillations in double-walled carbon nanotubes. Nat Comm 4:1375CrossRefGoogle Scholar
  27. Liu K, Jin C, Hong X, Kim J, Zettl A, Wang E, Wang F (2014) Van der waals-coupled electronic states in incommensurate double-walled carbon nanotubes. Nat Phys 10:737–742CrossRefGoogle Scholar
  28. Magoga M, Joachim C (1999) Conductance of molecular wires connected or bonded in parallel. Phys Rev B 59:16,011–16,021CrossRefGoogle Scholar
  29. Mintmire JW, Dunlap BI, White CT (1992) Are fullerene tubules metallic? Phys Rev Lett 68:631CrossRefGoogle Scholar
  30. Mishra BK, Ashok B (2018) Coaxial carbon nanotubes: from springs to ratchet wheels and nanobearings. Mater Res Express 5:075,023–1–075,023–12CrossRefGoogle Scholar
  31. Moore KE, Tune DD, Flavel BS (2015) Double-walled carbon nanotube processing. Adv Mat 27:3105–3137CrossRefGoogle Scholar
  32. Moradian R (2004) Disordered carbon nanotube alloys in the effective-medium supercell approximation. Phys Rev B 70:205,425CrossRefGoogle Scholar
  33. Moradian R, Azadi S (2006) Boron and nitrogen-doped single-walled carbon nanotube. Phys E 35:157–160CrossRefGoogle Scholar
  34. Moradian R, Fathalian A (2006) Ferromagnetic semiconductor single-wall carbon nanotubes. Nanotechnology 17:1835CrossRefGoogle Scholar
  35. Moradian R, Azadi S, Refii-Taber J (2007) When double-wall carbon nanotubes can become metallic or semiconducting. J Phys Cond Mat 19:176,209CrossRefGoogle Scholar
  36. Patel AM, Joshi AY (2015) Detection of biological objects using dynamic characteristics of double-walled carbon nanotubes. Appl Nano 5:681–695CrossRefGoogle Scholar
  37. Pederson MR, Broughton JO (1992) Nanocapillarity in fullerene tubules. Phys Rev Lett 69:2689CrossRefGoogle Scholar
  38. Postma HWC, Teepen T, Yao Z, Grifoni M, Dekker C (2001) Carbon nanotube single-electron transistors at room temperature. Science 293:76CrossRefGoogle Scholar
  39. Robertson DH, Brenner DW, Mintmire JW (1992) Energetics of nanoscale graphitic tubules. Phys Rev B 45:12,592CrossRefGoogle Scholar
  40. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of graphene tubules based on c60. Phys Rev B 46:1804CrossRefGoogle Scholar
  41. Sautet P, Joachim C (1988) Electronic transmission coefficient for the single-impurity problem in the scattering-matrix approach. Phys Rev B 38:12,238–12,247CrossRefGoogle Scholar
  42. Shimada T, Sugai T, Ohno Y, Kishimoto S, Mizutani T, Yoshida H, Okazaki T, Shinohara H (2004a) Double-wall carbon nanotube field-effect transistors: ambipolar transport characteristics. Appl Phys Lett 84:2412Google Scholar
  43. Shimada T, Sugai T, Ohno Y, Kishimoto S, Mizutani T, Yoshida H, Okazaki T, Shinohara H (2004b) Double-wall carbon nanotube field-effect transistors: ambipolar transport characteristics. Appl Phys Lett 84:2412–2414Google Scholar
  44. Srivastava S, Kino H, Joachim C (2016) Contact conductance of a graphene nanoribbons with its graphene nano-electrodes. Nanoscale 8:9265–9271CrossRefGoogle Scholar
  45. Stone AD, Szafer A (1988) What is measured when you measure a resistance?—the landauer formula revisited. IBM J Res Dev 32:384–413CrossRefGoogle Scholar
  46. Su WS, Leung TC, Chan CT (2007) Work function of single-walled and multiwalled carbon nanotubes: first-principles study. Phys Rev B 76:235,413–1–235,413–8CrossRefGoogle Scholar
  47. Tison Y, Giusca CE, Stolojan V, Hayashi Y, Silva SRP (2008) The inner shell influence on the electronic structure of double-walled carbon nanotubes. Adv Mater 20:189–194CrossRefGoogle Scholar
  48. Tsang SC, Harris PJF, Green MLH (1993) Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature 362:520–522CrossRefGoogle Scholar
  49. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7CrossRefGoogle Scholar
  50. Wei J, Zhu H, Jiang B, Ci L, Wu D (2003) Electronic properties of double-walled carbon nanotube films. Carbon 41:2495CrossRefGoogle Scholar
  51. White C, Todorov T (1998) Carbon nanotubes as long ballistic conductors. Nature 393:240CrossRefGoogle Scholar
  52. Wolfsberg M, Helmholz LJ (1952) The spectra and electronic structure of the tetrahedral ions mno\(_{4}^{-}\), cro\(_{4}^{--}\), and clo\(_{4}^{-}\). J Chem Phys 20:837–843CrossRefGoogle Scholar
  53. Yamada Y, Kimizuka O, Tanaike O, Machida K, Suematsu S, Tamamitsu K, Saeki S, Yamada Y, Hatori H (2009) Capacitor properties and pore structure of single- and double-walled carbon nanotubes. Electrochem Solid-State Lett 12:K14–K16CrossRefGoogle Scholar
  54. Yong KS, Otalvaro DM, Duchemin I, Saeys M, Joachim C (2008) Calculation of the conductance of a finite atomic line of sulfur vacancies created on a molybdenum disulfide surface. Phys Rev B 77:205,429–1–205,429–9CrossRefGoogle Scholar
  55. Zhang Y, Zhou L, Zhao S, Wang W, Wang E, Liang W (2014) Electronic transport properties of inner and outer shells in near ohmic-contacted double-walled carbon nanotube transistors. J Appl Phys 115:224,503CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.International Institute of Information Technology BangaloreBengaluruIndia
  2. 2.CEMES-CNRSToulouse CedexFrance

Personalised recommendations