Advertisement

The centrifugally constructed and thermally activated three-dimensional graphene toward a binder-free highly performed anode of the lithium-ion battery

  • Yafei Li
  • Zhe Sun
  • Feng Chen
  • Lei Wang
  • Wenlong Li
  • Ying Xu
  • Yan CaoEmail author
Research Paper
  • 73 Downloads

Abstract

A binder-free three-dimensional porous interconnected graphene (a-3DrGO@NF) was centrifugally constructed and KOH-activated at 800 °C, leading a mechanically strong and pore-developed anode candidate for lithium ion batteries (LIBs). The unique approach of the integration of the mechanical construction and thermal activation demonstrated favorable frameworks to facilitate the stable and fast migrations of both ion and electron during the galvanostatic charge/discharge process, thus significantly improving its durability and electrochemical performance compared to those without the activated and thermal treatment. The a-3DrGO@NF LIBs showed a highly reversible capacity of 1250 mAh g−1 at a current density of 0.1 A g−1 after 50 cycles without degradation relative to the first cycle. More importantly, the a-3DrGO@NF LIBs exhibited excellent large current discharge property and cyclic stability of 965 mAh g−1 in its first cycle and 545 mAh g−1 after 150 cycles at a current density of 4 A g−1. Furthermore, it can be quickly charged and discharged in a very short time of 92 s together with high-rate capability of 256 mAh g−1 after 200 cycles at 10 A g−1. At both lower and higher its current density as to 10 A g−1, the coulombic efficiency was close to 100% and showed the reliability of a-3DrGO@NF LIBs.

Keywords

Three-dimensional network Reduced graphene oxides Centrifugally constructed KOH activation Anode materials Lithium-ion battery 

Notes

Acknowledgments

This work is supported by grants from the National Key R&D Program of China (grant numbers 2017YFE0105500 and 2016YFE0108400) and the National Natural Science Foundation of China (grant numbers 21676001 and 51602001).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2018_4389_MOESM1_ESM.docx (4.8 mb)
ESM 1 Supplementary experiment procedure, additional XPS characterization data, GCD profile of the KOH-activated NF, and CV data of the KOH-activated NF, 3DGO@NF, and 3DrGO@NF are shown in Supporting Information. (DOCX 4877 kb)

References

  1. Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736CrossRefGoogle Scholar
  2. Amitha FE, Reddy ALM, Ramaprabhu S (2009) A non-aqueous electrolyte-based asymmetric supercapacitor with polymer and metal oxide/multiwalled carbon nanotube electrodes. J Nanopart Res 11:725–729CrossRefGoogle Scholar
  3. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614CrossRefGoogle Scholar
  4. Beidaghi M, Wang C (2012) Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv Funct Mater 22:4501–4510CrossRefGoogle Scholar
  5. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428CrossRefGoogle Scholar
  6. Chen Y, Zhu J, Qu B, Lu B, Xu Z (2014) Graphene improving lithium-ion battery performance by construction of NiCo2O4/graphene hybrid nanosheet arrays. Nano Energy 3:88–94CrossRefGoogle Scholar
  7. Chen KS, Xu R, Luu NS, Secor EB, Hamamoto K, Li QQ, Kin S, Sangwan VK, Balla I, Guiney LM et al (2017) Comprehensive enhancement of nanostructured lithium-ion battery cathode materials via conformal graphene dispersion. Nano Lett 17:2539–2546CrossRefGoogle Scholar
  8. Chu LH, Li MC, Wang Y, Li XD, Wan ZP, Dou SY, Chu Y (2016) Multishelled NiO hollow spheres decorated by graphene nanosheets as anodes for lithium-ion batteries with improved reversible capacity and cycling stability. J Nanomater 2016:1–6.  https://doi.org/10.1155/2016/4901847 CrossRefGoogle Scholar
  9. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534CrossRefGoogle Scholar
  10. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  11. Grishanov DA, Mikhaylov AA, Medvedev AG, Gun J, Nagasubramanian A, Madhavi S, Lev O, Prikhodchenko PV (2017) Synthesis of high volumetric capacity graphene oxide-supported tellurantimony Na- and Li-ion battery anodes by hydrogen peroxide sol gel processing. J Colloid Interface Sci 512:165–171CrossRefGoogle Scholar
  12. Ha SH, Jeong YS, Lee YJ (2013) Free standing reduced graphene oxide film cathodes for lithium ion batteries. ACS Appl Mater Interfaces 5:12295–12303CrossRefGoogle Scholar
  13. Huang H, Tang Y, Xu L, Tang S, Du Y (2014) Direct formation of reduced graphene oxide and 3D lightweight nickel network composite foam by hydrohalic acids and its application for high-performance supercapacitors. ACS Appl Mater Interfaces 6:10248–10257CrossRefGoogle Scholar
  14. Huskinson B, Marshak MP, Suh C, Er S, Gerhardt MR, Galvin CJ, Chen X, Aspuru-Guzik A, Gordon RG, Aziz MJ (2014) A metal-free organic-inorganic aqueous flow battery. Nature 505:195–198CrossRefGoogle Scholar
  15. Krishnan SG, Reddy MV, Harilal M, Vidyadharan B, Misnon II, Rahim MHA, Ismail J, Jose R (2015) Characterization of MgCo2O4 as an electrode for high performance supercapacitors. Electrochim Acta 161:312–321CrossRefGoogle Scholar
  16. Liu H, Gao P, Fang J, Yang G (2011a) Li3V2(PO4)3/graphene nanocomposites as cathode material for lithium ion batteries. Chem Commun 47:9110–9112CrossRefGoogle Scholar
  17. Liu WJ, Chen GH, He GH, Zhang W (2011b) Synthesis of starfish-like Cu2O nanocrystals through γ-irradiation and their application in lithium-ion batteries. J Nanopart Res 13:2705–2713CrossRefGoogle Scholar
  18. Liu W, Yan X, Lang J, Peng C, Xue Q (2012) Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. J Mater Chem 22:17245–17253CrossRefGoogle Scholar
  19. Liu H, Li W, Shen DK, Zhao DY, Wang GX (2015) Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J Am Chem Soc 137:13161–13166CrossRefGoogle Scholar
  20. Lu Y, Li B, Zheng SS, Xu YX, Xue HG, Pang H (2017) Syntheses and energy storage applications of MxSy (M = Cu, Ag, Au) and their composites: rechargeable batteries and supercapacitors. Adv Funct Mater 27:1703949CrossRefGoogle Scholar
  21. Mahmood N, Zhang CZ, Yin H, Hou YL (2014) Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. J Mater Chem A 2:15–32CrossRefGoogle Scholar
  22. Meng Y, Zhao Y, Hu C, Cheng H, Hu Y, Zhang Z, Shi G, Qu L (2013) All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 25:2326–2331CrossRefGoogle Scholar
  23. Molina-Sabio M, Rodrı́guez-Reinoso F (2004) Role of chemical activation in the development of carbon porosity. Colloids Surf A Physicochem Eng Asp 241:15–25CrossRefGoogle Scholar
  24. Ni Y, Yin Y, Wu P, Zhang H, Cai C (2014) Nitrogen/carbon atomic ratio-dependent performances of nitrogen-doped carbon-coated metal oxide nanocrystals for anodes in lithium-ion batteries. ACS Appl Mater Interfaces 6:7346–7355CrossRefGoogle Scholar
  25. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  26. Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M (2013) Review of material research and development for vanadium redox flow battery applications. Electrochim Acta 101:27–40CrossRefGoogle Scholar
  27. Paronyan TM, Thapa AK, Sherehiy A, Jasinski JB, Jangam JSD (2017) Incommensurate graphene foam as a high capacity lithium intercalation anode. Sci Rep 7:39944CrossRefGoogle Scholar
  28. Pohjalainen E, Rauhala T, Valkeapaa M, Kallioinen J, Kallio T (2015) Effect of Li4Ti5O12 particle size on the performance of lithium ion battery electrodes at high C-rates and low temperatures. J Phys Chem C 119:2277–2283CrossRefGoogle Scholar
  29. Qie L, Chen W, Xu H, Xiong X, Jiang Y, Zou F, Hu X, Xin Y, Zhang Z, Huang Y (2013) Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci 6:2497–2504CrossRefGoogle Scholar
  30. Qu GL, Geng HB, Ge DH, Zheng JW, Gu HW (2016) Graphene-coated mesoporous Co3O4 fibers as an efficient anode material for Li-ion batteries. RSC Adv 6:71006–71011CrossRefGoogle Scholar
  31. Ramadoss A, Yoon KY, Kwak MJ, Kim SI, Ryu ST, Jang JH (2017) Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-dimensional-graphene/graphite-paper. J Power Sources 337:159–165CrossRefGoogle Scholar
  32. Shi JH, Li XC, He GH, Zhang L, Li M (2015) Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors. J Mater Chem A 3:20619–20626CrossRefGoogle Scholar
  33. Shi WP, Zhang YM, Key J, Shen PK (2018) Three-dimensional graphene sheets with NiO nanobelt outgrowths for enhanced capacity and long term high rate cycling Li-ion battery anode material. J Power Sources 379:362–370CrossRefGoogle Scholar
  34. Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710–23725CrossRefGoogle Scholar
  35. Wang ZL, Xu D, Wang HG, Wu Z, Zhang XB (2013) In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano 7:2422–2430CrossRefGoogle Scholar
  36. Wang XH, Fan Y, Susantyoko RA, Xiao QZ, Sun LM, He DY, Zhang Q (2014) High areal capacity Li ion battery anode based on thick mesoporous Co3O4 nanosheet networks. Nano Energy 5:91–96CrossRefGoogle Scholar
  37. Wang S, Wang G, Zhang X, Tang Y, Wu J, Xiang X, Zu X, Yu Q (2017) Novel flower-like graphene foam directly grown on a nickel template by chemical vapor deposition. Carbon 120:103–110CrossRefGoogle Scholar
  38. Wang QH, Xu JT, Zhang WC, Mao ML, Wei ZX, Wang L, Cui CY, Zhu YX, Ma JM (2018) Research progress on vanadium-based cathode materials for sodium ion batteries. J Mater Chem A 6:8815–8838CrossRefGoogle Scholar
  39. Wei ZX, Wang L, Zhuo M, Ni W, Wang HX, Ma JM (2018) Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. J Mater Chem A 6:12185–12214.  https://doi.org/10.1039/c8ta02695e CrossRefGoogle Scholar
  40. Weng GM, Li ZJ, Cong GT, Zhou YC, Lu YC (2017) Unlocking the capacity of iodide for high-energy density zinc/polyiodide and lithium/polyiodide redox flow batteries. Energy Environ Sci 10:735–741CrossRefGoogle Scholar
  41. Wu ZS, Ren WC, Xu L, Li F, Cheng HM (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471CrossRefGoogle Scholar
  42. Wu ZS, Sun Y, Tan YZ, Yang S, Feng X, Mullen K (2012) Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J Am Chem Soc 134:19532–19535CrossRefGoogle Scholar
  43. Wu NS, Low JX, Liu T, Yu JG, Cao SW (2017) Hierarchical hollow cages of Mn-Co layered double hydroxide as supercapacitor electrode materials. Appl Surf Sci 413:35–40CrossRefGoogle Scholar
  44. Xia X, Tu J, Mai Y, Chen R, Wang X, Gu C, Zhao X (2011) Graphene sheet/porous NiO hybrid film for supercapacitor applications. Chem Eur J 17:10898–10905CrossRefGoogle Scholar
  45. Xiao X, Peng X, Jin H, Li T, Zhang C, Gao B, Hu B, Huo K, Zhou J (2013) Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Adv Mater 25:5091–5097CrossRefGoogle Scholar
  46. Xu LL, Lu BG (2016) 3D-frame structure NiO@CNTs for ultrafast charge slow discharge lithium ion batteries. Electrochim Act 210:456–461CrossRefGoogle Scholar
  47. Xu GB, Li W, Yang LW, Wei XL, Ding JW, Zhong JX, Chu PK (2015) Highly-crystalline ultrathin Li4Ti5O12 nanosheets decorated with silver nanocrystals as a high-performance anode material for lithium ion batteries. J Power Sources 276:247–254CrossRefGoogle Scholar
  48. Yang J, Wang J, Wang D, Li X, Geng D, Liang G, Gauthier M, Li R, Sun X (2012a) 3D porous LiFePO4/graphene hybrid cathodes with enhanced performance for Li-ion batteries. J Power Sources 208:340–344CrossRefGoogle Scholar
  49. Yang X, Xu J, Xi LJ, Yao YL, Yang QD, Chung CY, Lee CS (2012b) Microwave-assisted synthesis of Cu2ZnSnS4 nanocrystals as a novel anode material for lithium ion battery. J Nanopart Res 14:931CrossRefGoogle Scholar
  50. Yang Y, Huang JX, Zeng J, Xiong J, Zhao JB (2017) Direct electrophoretic deposition of binder-free Co3O4/graphene sandwich-like hybrid electrode as remarkable lithium ion battery anode. ACS Appl Mater Interfaces 9:32801–32811CrossRefGoogle Scholar
  51. Yao YF, Zhu YH, Zhao SN, Shen JH, Yang XL, Li CZ (2017) Halide ion intercalated electrodeposition synthesis of Co3O4 nanosheets with tunable pores on graphene foams as free-standing and flexible Li-ion battery anodes. ACS Appl Energy Mater 1:1239–1251CrossRefGoogle Scholar
  52. Ye S, Feng J, Wu P (2013) Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode. ACS Appl Mater Interfaces 5:7122–7129CrossRefGoogle Scholar
  53. Yu X, Cai H, Zhang W, Li X, Pan N, Luo Y, Wang X, Hou JG (2011) Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS Nano 5:952–958CrossRefGoogle Scholar
  54. Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2:213–234CrossRefGoogle Scholar
  55. Zhang S, Li Y, Pan N (2012) Graphene based supercapacitor fabricated by vacuum filtration deposition. J Power Sources 206:476–482CrossRefGoogle Scholar
  56. Zhao L, Gao M, Yue W, Jiang Y, Wang Y, Ren Y, Hu F (2015) Sandwich-structured graphene-Fe3O4@carbon nanocomposites for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 7:9709–9715CrossRefGoogle Scholar
  57. Zhou K, He Y, Xu QC, Zhang Q, Zhou AA, Lu ZH, Yang LK, Jiang Y, Ge DT, Liu XY et al (2018) A hydrogel of ultrathin pure polyaniline nanofibers: oxidant-templating preparation and supercapacitor application. ACS Nano 12:5888–5894CrossRefGoogle Scholar
  58. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541CrossRefGoogle Scholar
  59. Zuo Z, Kim TY, Kholmanov I, Li H, Chou H, Li Y (2015) Ultra-light hierarchical graphene electrode for binder-free supercapacitors and lithium-ion battery anodes. Small 11:4922–4930CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringAnhui UniversityHefeiChina
  2. 2.Institute for Combustion Science and Environmental Technology, Department of ChemistryWestern Kentucky UniversityBowling GreenUSA

Personalised recommendations