Advertisement

Self-limiting gold nanoparticle surface assemblies through modulation of pH and ionic strength

  • John J. Kelley
  • Michael L. Jespersen
  • Richard A. VaiaEmail author
Research Paper

Abstract

Techniques to assemble monolayers of nanoparticles on surfaces are crucial for manufacturing devices for applications ranging from bio-sensing to tribology. Electrostatic-mediated assembly has numerous potential attributes, including self-limiting deposition and the ability to tune nanoparticle density and order through solution conditions. Herein, we establish the synergistic role of pH, ionic strength (I), and particle functionalization to identify the conditions for electrostatic assembly that yield maximum process stability and particle coverage. When the particle and surface are oppositely charged, the density of adsorbed 11.4-nm gold nanoparticles (AuNPs) could be tuned with both pH and ionic strength. The resulting monolayer arrays were disordered, in agreement with random sequential adsorption (RSA) theory. Finally, AuNPs stabilized by associated citrate molecules provided a larger processing window (pH 3–9, I = 1–10 mM) than AuNPs capped with a covalently bound mercaptopropanesulfonate (MPS) ligand shell (pH 3–9, I = 0.1–5 mM). These processing regimes provide a standard for predicting structural formations at reduced particle-surface interactions.

Keywords

Gold nanoparticles pH Ionic strength APTES Self-assembled monolayers Random sequential adsorption Radial distribution function Voronoi tessellation 

Notes

Acknowledgements

The authors would like to thank Jennifer Luna-Singh and Logan Ward for writing MATLAB code for structural analyses as well as Andrey A. Voevodin and Erick S. Vasquez for their technical consultation.

Funding information

This work was financially supported by the Air Force Research Laboratory Materials & Manufacturing Directorate and the Air Force Office of Scientific Research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2018_4388_MOESM1_ESM.pdf (978 kb)
ESM 1 (PDF 978 kb)

References

  1. Abu Hatab NA, Oran JM, Sepaniak MJ (2008) Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. ACS Nano 2:377–385.  https://doi.org/10.1021/nn7003487 CrossRefGoogle Scholar
  2. Adamczyk Z, Weroński P (1999) Application of the DLVO theory for particle deposition problems. Adv Colloid Interf Sci 83:137–226.  https://doi.org/10.1016/S0001-8686(99)00009-3 CrossRefGoogle Scholar
  3. Adamczyk Z, Zembala M, Siwek B, Warszyński P (1990) Structure and ordering in localized adsorption of particles. J Colloid Interface Sci 140:123–137.  https://doi.org/10.1016/0021-9797(90)90329-M CrossRefGoogle Scholar
  4. Ahmed SR, Kim J, Tran VT, Suzuki T, Neethirajan S, Lee J, Park EY (2017) In situ self-assembly of gold nanoparticles on hydrophilic and hydrophobic substrates for influenza virus-sensing platform. Sci Rep 7:44495.  https://doi.org/10.1038/srep44495 CrossRefGoogle Scholar
  5. Aureau D, Varin Y, Roodenko K, Seitz O, Pluchery O, Chabal YJ (2010) Controlled deposition of gold nanoparticles on well-defined organic monolayer grafted on silicon surfaces. J Phys Chem C 114:14180–14186.  https://doi.org/10.1021/jp104183m CrossRefGoogle Scholar
  6. Bellino MG, Calvo EJ, Gordillo G (2004) Adsorption kinetics of charged thiols on gold nanoparticles. Phys Chem Chem Phys 6:424–428.  https://doi.org/10.1039/b312252b CrossRefGoogle Scholar
  7. Berven CA, Clarke L, Mooster JL, Wybourne MN, Hutchison JE (2001) Defect-tolerant single-electron charging at room temperature in metal nanoparticle decorated biopolymers. Adv Mater 13:109–113.  https://doi.org/10.1002/1521-4095(200101)13:2 CrossRefGoogle Scholar
  8. Bhat RR, Genzer J (2007) Tuning the number density of nanoparticles by multivariant tailoring of attachment points on flat substrates. Nanotechnology 18:025301.  https://doi.org/10.1088/0957-4484/18/2/025301 CrossRefGoogle Scholar
  9. Brewer DD, Tsapatsis M, Kumar S (2010) Dynamics of surface structure evolution in colloidal adsorption: charge patterning and polydispersity. J Chem Phys 133:034709.  https://doi.org/10.1063/1.3455232 CrossRefGoogle Scholar
  10. Brouwer EAM, Kooij ES, Wormeester H, Poelsema B (2003) Ionic strength dependent kinetics of nanocolloidal gold deposition. Langmuir 19:8102–8108.  https://doi.org/10.1021/la034698g CrossRefGoogle Scholar
  11. Campos E, Asandei A, McVey CE, Dias JC, Oliveira ASF, Soares CM, Luchian T, Astier Y (2012) The role of Lys147 in the interaction between MPSA-gold nanoparticles and the α-hemolysin nanopore. Langmuir 28:15643–15650.  https://doi.org/10.1021/la302613g CrossRefGoogle Scholar
  12. Chen M-C, Yang Y-L, Chen S-W, Li J-H, Aklilu M, Tai Y (2013) Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic. ACS Appl Mater Interfaces 5:511–517.  https://doi.org/10.1021/am3028712 CrossRefGoogle Scholar
  13. Derjaguin B, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys Chem URSS 14Google Scholar
  14. Diegoli S, Mendes PM, Baguley ER, Leigh SJ, Iqbal P, Garcia Diaz YR, Begum S, Critchley K, Hammond GD, Evans SD, Attwood D, Jones IP, Preece JA (2006) pH-dependent gold nanoparticle self-organization on functionalized Si/SiO2 surfaces. J Exp Nanosci 1:333–353.  https://doi.org/10.1080/17458080600778644 CrossRefGoogle Scholar
  15. Feder J (1980) Random sequential adsorption. J Theor Biol 87:237–254.  https://doi.org/10.1016/0022-5193(80)90358-6 CrossRefGoogle Scholar
  16. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22CrossRefGoogle Scholar
  17. Giersig M, Mulvaney P (1993) Formation of ordered two-dimensional gold colloid lattices by electrophoretic deposition. J Phys Chem 97:6334–6336.  https://doi.org/10.1021/j100126a003 CrossRefGoogle Scholar
  18. Ginger DS, Zhang H, Mirkin CA (2004) The evolution of dip-pen nanolithography. Angew Chem Int Ed 43:30–45.  https://doi.org/10.1002/anie.200300608 CrossRefGoogle Scholar
  19. Goldberg RN, Kishore N, Lennen RM (2002) Thermodynamic quantities for the ionization reactions of buffers. J Phys Chem Ref Data 31:231–370.  https://doi.org/10.1063/1.1416902 CrossRefGoogle Scholar
  20. Grabar K et al (1996) Kinetic control of interparticle spacing in Au colloid-based surfaces: rational nanometer-scale architecture. J Am Chem Soc 118:1148–1153CrossRefGoogle Scholar
  21. Gray JJ, Bonnecaze RT (2001) Adsorption of colloidal particles by Brownian dynamics simulation: kinetics and surface structures. J Chem Phys 114:1366–1381CrossRefGoogle Scholar
  22. Hamlett CAE, Docker PT, Ward MCL, Prewett PD, Critchley K, Evans SD, Preece JA (2009) pH-dependent adsorption of Au nanoparticles on chemically modified Si3N4 MEMS devices. J Exp Nanosci 4:147–157.  https://doi.org/10.1080/17458080902929911 CrossRefGoogle Scholar
  23. Hinrichsen E, Feder J, Jøssang T (1986) Geometry of random sequential adsorption. J Stat Phys 44:793–827.  https://doi.org/10.1007/bf01011908 CrossRefGoogle Scholar
  24. Jencks WP, Regenstein J (2010) Ionization constants of acids and bases. In: Handbook of biochemistry and molecular biology, 4th ed. CRC Press, pp 595–635.  https://doi.org/10.1201/b10501-74
  25. Jiang L et al (2013) Synergistic modulation of surface interaction to assemble metal nanoparticles into two-dimensional arrays with tunable plasmonic properties. Small.  https://doi.org/10.1002/smll.201302126
  26. Johnson CA, Lenhoff AM (1996) Adsorption of charged latex particles on mica studied by atomic force microscopy. J Colloid Interf Sci 179:587–599CrossRefGoogle Scholar
  27. Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA (2011) Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem Rev 111:3736–3827.  https://doi.org/10.1021/cr1004452 CrossRefGoogle Scholar
  28. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707.  https://doi.org/10.1021/jp061667w CrossRefGoogle Scholar
  29. Kleimann J, Lecoultre G, Papastavrou G, Jeanneret S, Galletto P, Koper GJ, Borkovec M (2006) Deposition of nanosized latex particles onto silica and cellulose surfaces studied by optical reflectometry. J Colloid Interface Sci 303:460–471.  https://doi.org/10.1016/j.jcis.2006.08.006 CrossRefGoogle Scholar
  30. Kooij ES, Brouwer EAM, Wormeester H, Poelsema B (2002) Ionic strength mediated self-organization of gold nanocrystals: an AFM study. Langmuir 18:7677–7682.  https://doi.org/10.1021/la0257541 CrossRefGoogle Scholar
  31. Larsen AE, Grier DG (1997) Like-charge attractions in metastable colloidal crystallites. Nature 385:230–233 doi.org/10.1038/385230a0 CrossRefGoogle Scholar
  32. Lee HH, Chou KS, Huang KC (2005) Inkjet printing of nanosized silver colloids. Nanotechnology 16:2436–2441.  https://doi.org/10.1088/0957-4484/16/10/074 CrossRefGoogle Scholar
  33. Liu S, Tang Z (2010) Nanoparticle assemblies for biological and chemical sensing. J Mater Chem 20:24–35.  https://doi.org/10.1039/b911328m CrossRefGoogle Scholar
  34. Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B Biointerfaces 58:3–7.  https://doi.org/10.1016/j.colsurfb.2006.08.005 CrossRefGoogle Scholar
  35. Lundgren AO, Björefors F, Olofsson LGM, Elwing H (2008) Self-arrangement among charge-stabilized gold nanoparticles on a dithiothreitol reactivated octanedithiol monolayer. Nano Lett 8:3989–3992.  https://doi.org/10.1021/nl802543g CrossRefGoogle Scholar
  36. MacCuspie RI et al (2010) Purification–chemical structure–electrical property relationship in gold nanoparticle liquids. Appl Organomet Chem 24:590–599.  https://doi.org/10.1002/aoc.1632 CrossRefGoogle Scholar
  37. Miyahara M, Watanabe S, Gotoh Y, Higashitani K (2004) Adsorption and order formation of colloidal nanoparticles on a substrate: a Brownian dynamics study. J Chem Phys 120:1524–1534.  https://doi.org/10.1063/1.1632896 CrossRefGoogle Scholar
  38. Miyahara M, Watanabe S, Higashitani K (2006) Modeling adsorption and order formation by colloidal particles on a solid surface: a Brownian dynamics study. Chem Eng Sci 61:2142–2149.  https://doi.org/10.1016/j.ces.2004.02.024 CrossRefGoogle Scholar
  39. Nepal D, Onses MS, Park K, Jespersen M, Thode CJ, Nealey PF, Vaia RA (2012) Control over position, orientation, and spacing of arrays of gold nanorods using chemically nanopatterned surfaces and tailored particle–particle–surface interactions. ACS Nano 6:5693–5701.  https://doi.org/10.1021/nn301824u CrossRefGoogle Scholar
  40. Oberholzer MR, Wagner NJ, Lenhoff AM (1997) Grand canonical Brownian dynamics simulation of colloidal adsorption. J Chem Phys 107:9157–9167CrossRefGoogle Scholar
  41. Park J-W, Shumaker-Parry JS (2014) Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles. J Am Chem Soc 136:1907–1921.  https://doi.org/10.1021/ja4097384 CrossRefGoogle Scholar
  42. Patton ST, Slocik J, Naik R (2008) Bimetallic nanoparticles for surface modification and lubrication of MEMS switch contacts. Nanotechnology 19:405705CrossRefGoogle Scholar
  43. Paul S, Pearson C, Molloy A, Cousins MA, Green M, Kolliopoulou S, Dimitrakis P, Normand P, Tsoukalas D, Petty MC (2003) Langmuir−Blodgett film deposition of metallic nanoparticles and their application to electronic memory structures. Nano Lett 3:533–536.  https://doi.org/10.1021/nl034008t CrossRefGoogle Scholar
  44. Pericet-Camara R, Cahill BP, Papastavrou G, Borkovec M (2007) Nano-patterning of solid substrates by adsorbed dendrimers. Chem Commun 266–268.  https://doi.org/10.1039/b612249c
  45. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562.  https://doi.org/10.1021/cr030067f CrossRefGoogle Scholar
  46. Russel WB, Saville DA, Schowalter WR (1992) Colloidal dispersions. Cambridge University Press, New YorkGoogle Scholar
  47. Schaeublin NM, Braydich-Stolle LK, Maurer EI, Park K, MacCuspie RI, Afrooz ARMN, Vaia RA, Saleh NB, Hussain SM (2012) Does shape matter? Bioeffects of gold nanomaterials in a human skin cell model. Langmuir 28:3248–3258.  https://doi.org/10.1021/la204081m CrossRefGoogle Scholar
  48. Segalman RA, Hexemer A, Hayward RC, Kramer EJ (2003) Ordering and melting of block copolymer spherical domains in 2 and 3 dimensions. Macromolecules 36:3272–3288.  https://doi.org/10.1021/ma021367m CrossRefGoogle Scholar
  49. Semmler M, Mann EK, Rička J, Borkovec M (1998) Diffusional deposition of charged latex particles on water−solid interfaces at low ionic strength. Langmuir 14:5127–5132.  https://doi.org/10.1021/la9801559 CrossRefGoogle Scholar
  50. Semmler M, Rička J, Borkovec M (2000) Diffusional deposition of colloidal particles: electrostatic interaction and size polydispersity effects. Colloids Surf A Physicochem Eng Asp 165(1–3):79–93CrossRefGoogle Scholar
  51. Seung HK, Heng P, Costas PG, Christine KL, Jean MJF, Dimos P (2007) All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 18:345202CrossRefGoogle Scholar
  52. Stoll VS, Blanchard JS (2009) Buffers: principles and practice. Methods Enzymol 463:43–56.  https://doi.org/10.1016/s0076-6879(09)63006-8 CrossRefGoogle Scholar
  53. Sweeney SF, Woehrle GH, Hutchison JE (2006) Rapid purification and size separation of gold nanoparticles via diafiltration. J Am Chem Soc 128:3190–3197.  https://doi.org/10.1021/ja0558241 CrossRefGoogle Scholar
  54. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier Publishing Company. Inc., New YorkGoogle Scholar
  55. Winkler K, Paszewski M, Kalwarczyk T, Kalwarczyk E, Wojciechowski T, Gorecka E, Pociecha D, Holyst R, Fialkowski M (2011) Ionic strength-controlled deposition of charged nanoparticles on a solid substrate. J Phys Chem C 115:19096–19103.  https://doi.org/10.1021/jp206704s CrossRefGoogle Scholar
  56. Yao D, Li H, Guo Y, Zhou X, Xiao S, Liang H (2016) A pH-responsive DNA nanomachine-controlled catalytic assembly of gold nanoparticles. Chem Commun 52:7556–7559.  https://doi.org/10.1039/C6CC03089K CrossRefGoogle Scholar
  57. Yen C-W, Lin M-L, Wang A, Chen S-A, Chen J-M, Mou C-Y (2009) CO oxidation catalyzed by Au−Ag bimetallic nanoparticles supported in mesoporous silica. J Phys Chem C 113:17831–17839.  https://doi.org/10.1021/jp9037683 CrossRefGoogle Scholar
  58. Yu Q, Guan P, Qin D, Golden G, Wallace PM (2008) Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett 8:1923–1928.  https://doi.org/10.1021/nl0806163 CrossRefGoogle Scholar
  59. Zhang H, He HX, Wang J, Mu T, Liu ZF (1998) Force titration of amino group-terminated self-assembled monolayers using chemical force microscopy. Appl Phys A 66:S269–S271.  https://doi.org/10.1007/s003390051143 CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Materials and Manufacturing Directorate, Air Force Research LaboratoryWright-Patterson AFBDaytonUSA
  2. 2.UES Inc.BeavercreekUSA
  3. 3.Department of Chemical and Materials EngineeringUniversity of DaytonDaytonUSA
  4. 4.University of Dayton Research InstituteDaytonUSA

Personalised recommendations