Development and characterization of PLGA nanoparticles containing antibiotics

  • Lívia Maria do Amorim Costa Gaspar
  • Afonso Celso Silva Dórea
  • Daniela Droppa-Almeida
  • Isabelle Souza de Mélo Silva
  • Fabiano Emmanuel Montoro
  • Lumar Lucena Alves
  • Maria Lucila Hernandez Macedo
  • Francine Ferreira PadilhaEmail author
Research Paper


Several strategies for the delivery and release of drugs have been studied, among them the use of polymeric nanoparticles of PLGA (poly lactic-co-glycolic acid). These nanoparticles (NPs) have been shown to be promising for the controlled and effective release of drugs due to their biodegradability and biocompatibility. Regarding this, the aim of this study is to synthesize and characterize PLGA polymer nanoparticles associated with antimicrobials in order to reduce adverse reactions and to have a more effective local delivery. Empty PLGA nanoparticles and conjugated to vancomycin and meropenem antibiotics were synthesized by the double emulsification-solvent evaporation technique. Then, they were characterized by the analysis of the mean particle diameter, dynamic light scattering (DLS), Fourier transform infrared (FTIR) vibrational spectroscopy, contact angle measurement, and atomic force microscopy (AFM) and scanning electron microscopy (SEM). The DLS analysis of the NPs obtained showed approximate sizes of 263.5 nm (NPs-PLGA), 239.3 nm (NPs-VAN) and 284.2 nm (NPs-MER), and monodispersivity. FTIR results and contact angle measurements suggest encapsulation of antibiotics to NPs. The morphology evaluated through AFM and SEM indicates homogeneous, uniform, and spherical distribution of NPs and also apparently smooth. The antibacterial action of PLGA nanoparticles carried with antibiotics was effective when using concentrations of 5–2.5 mg/mL (PLGA-VAN) versus Staphylococcus aureus and 10–2.5 mg/mL (PLGA-MER) to Pseudomonas aeruginosa. The release kinetics of the antibiotics revealed a release profile of 43.9% at the end of 24 h and 96% at the end of 96 h for PLGA-VAN formulation and 8.25% and 16% at the end of 24 h and 96 h, for PLGA-MER, respectively. This study supports the potential application of PLGA particles containing antibiotics as facilitators of drug delivery and release effectively.


Nanoparticles PLGA Antibiotics Drug delivery application 


Compliance with ethical standards

Conflict of interest

The authors have also confirmed that this article is unique and not under consideration or published in any other publication, and that they have permission from rights holders to reproduce any copyrighted material. Any disclosures are made in this section. The external blind peer reviewers report no conflicts of interest.


  1. Abdelkader A, El-Mokhtar MA, Abdelkader O, Hamad MA, Elsabahy M, El-Gazayerly ON (2017) Ultrahigh antibacterial efficacy of meropenem-loaded chitosan nanoparticles in a septic animal model. Carbohydr Polym 174:1041–1050. CrossRefGoogle Scholar
  2. Cielecka-Piontek J, Paczkowska M, Lewandowska K, Barszcz B, Zalewski P, Garbacki P (2013) Solid-state stability study of meropenem – solutions based on spectrophotometric analysis. Chem Cent J 7:98. CrossRefGoogle Scholar
  3. Clinical and Laboratory Standards Institute (2017) M100-S27. Performance standards for antimicrobial susceptibility testing: 27th informational supplement. CLSI, WayneGoogle Scholar
  4. D’Souza S (2014) A review of in vitro drug release test methods for Nano-sized dosage forms. Adv Pharm 2014:1–12. CrossRefGoogle Scholar
  5. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161(2):505–522. CrossRefGoogle Scholar
  6. Duncan D, Gaspar R (2011) Nanomedicine(s) under the microscope. Mol Pharm 8:2101–2141. CrossRefGoogle Scholar
  7. Georgiev AG, Johansen J, Ramanathan VD, Sere YY, Beh CT, Menon AK (2013) Arv1 regulates PM and ER membrane structure and homeostasis but is dispensable for intracellular sterol transport. Traffic 14(8):912–921Google Scholar
  8. Günday Türeli N, Torge A, Juntke J, Schwarz BC, Schneider-Daum N, Türeli AE, Lehr CM, Schneider M (2017) Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections. Eur J Pharm Biopharm 117:363–371. CrossRefGoogle Scholar
  9. Hill LE, Taylor MT, Gomes C (2013) Antimicrobial efficacy of poly(DL-lactideco-glycolide) (PLGA) nanoparticles with entrapped cinnamon bark extract against listeria monocytogenes and Salmonella typhimurium. J Food Sci 78(4):626–632. CrossRefGoogle Scholar
  10. Javed KR, Ahmad M, Ali S et al (2015) Comparison of Doxorubicin Anticancer Drug Loading on Different Metal Oxide Nanoparticles. Medicine 94(11):e617. CrossRefGoogle Scholar
  11. Jelvehgari M, Barar J, Valizadeh H, Heidari N (2010) Preparation and evaluation of poly (s-caprolactone) nanoparticles-in- microparticles by W/O/W emulsion method. Iran J Basic Med Sci 13(3):85–96. CrossRefGoogle Scholar
  12. Kim JK, Kim HJ, Chung J-Y, Lee JH, Young SB, Kim YH (2014) Natural and synthetic biomaterials for controlled drug delivery. Arch Pharm Res 37:60–68. CrossRefGoogle Scholar
  13. Lotfipour F, Abdollahi S, Jelvehgari M, Valizadeh H, Hassan M, Milani M (2014) Study of antimicrobial effects of vancomycin loaded PLGA nanoparticles against enterococcus clinical isolates. Drug Res (Stuttg) 64(7):348–352. CrossRefGoogle Scholar
  14. Modi S, Anderson BD (2013) Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic Dialysis method. Mol Pharm 10(8):3076–3089. CrossRefGoogle Scholar
  15. Mohanraj VJ, Chen Y (2006) Nanoparticles – a review. Trop J Pharm Res 5(1):561–573. CrossRefGoogle Scholar
  16. Moreira Gomes C, Moreira RG, Castell-Perez E (2011) Poly (DL-lactide-coglycolide) (PLGA) nanoparticles with entrapped transcinnamaldehyde and eugenol for antimicrobial delivery applications. J Food Sci 76:16–24. CrossRefGoogle Scholar
  17. Nandakumar V, Geetha V, Chittaranjan S, Doble M (2013) High glycolic poly (DL lactic co glycolic acid) nanoparticles for controlled release of meropenem. Biomed Pharmacother 67:431–436. CrossRefGoogle Scholar
  18. Parisi OI, Scrivano L, Sinicropi MS, Puoci F (2017) Polymeric nanoparticle constructs as devices for antibacterial therapy. Curr Opin Pharmacol 36:72–77. CrossRefGoogle Scholar
  19. Paul DR (2011) Elaborations on the Higuchi model for drug delivery. Int J Pharm 418:13–17. CrossRefGoogle Scholar
  20. Posadowska U, Brzychczy-Włoch M, Pamuła E (2015) Gentamicin loaded PLGA nanoparticles as local drug delivery system for the osteomyelitis treatment. Acta Bioeng Biomech 17(3):41–48. CrossRefGoogle Scholar
  21. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913. CrossRefGoogle Scholar
  22. Sabaeifard P, Abdi-Ali A, Soudi MR, Gamazo C, Irache JM (2016) Amikacin loaded PLGA nanoparticles against Pseudomonas aeruginosa. Eur J Pharm Sci 93:392–398. CrossRefGoogle Scholar
  23. Silva ISM, Santos RFP, Melo TVC, Silva AJC, Sarmento PA, Lúcio IML, Campesatto EA, Padilha FF, Conserva LM, Bastos MLA (2014) In vitro biological potential of Guanxuma-of-horn [Sebastiania corniculata (Vahl) Mull. Arg.] in infection control. J Chem Pharm Res 6(4):663–669Google Scholar
  24. Tomaszewska E, Soliwoda K, Kadziola K, Tkacz-Szczesna B, Celichowski G, Cichomski M, Szmaja W, Grobelny J (2013) Detection limits of DLS and UV-vis spectroscopy in characterization of Polydisperse nanoparticles colloids. J Nanomater 2013:1–10. CrossRefGoogle Scholar
  25. Venkatesh DN, Baskaran M, Karri VVSR, Mannemala SS, Radhakrishna K, Goti S (2015) Fabrication and in vivo evaluation of Nelfinavir loaded PLGA nanoparticles for enhancing oral bioavailability and therapeutic effect. Saudi Pharm J 23(6):667–674. CrossRefGoogle Scholar
  26. World Health Organization (WHO) (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. IOP Publishing PhysicsWeb. Accessed 10 December 2017
  27. Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC (2014) Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release 190:485–499. CrossRefGoogle Scholar
  28. Zaidi S, Misba L, Khan AU (2017) Nano-therapeutics: a revolution in infection control in post antibiotic era. Nanomedicine 13(7):2281–2301. CrossRefGoogle Scholar
  29. Zakeri-Milani P, Loveymi BD, Jelvehgari M, Valizadeh H (2013) The characteristics and improved intestinal permeability of vancomycin PLGA-nanoparticles as colloidal drug delivery system. Colloids Surf B: Biointerfaces 103:174–181. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Lívia Maria do Amorim Costa Gaspar
    • 1
  • Afonso Celso Silva Dórea
    • 1
  • Daniela Droppa-Almeida
    • 1
  • Isabelle Souza de Mélo Silva
    • 1
  • Fabiano Emmanuel Montoro
    • 2
  • Lumar Lucena Alves
    • 1
  • Maria Lucila Hernandez Macedo
    • 1
  • Francine Ferreira Padilha
    • 1
    Email author
  1. 1.Instituto de Tecnologia e PesquisaUniversidade TiradentesAracajuBrazil
  2. 2.Centro Nacional de Pesquisa em Energia e MateriaisLaboratório Nacional de NanotecnologiaSão PauloBrazil

Personalised recommendations