Advertisement

Low-bias visible photodetection realized by graphite nanostructures grown on silicon nanoporous pillar array

  • Zhao-Jun Tang
  • Di Wu
  • Sen Li
  • Yan-Tao Li
  • Xin-Jian Li
Research Paper
  • 22 Downloads

Abstract

A graphite nanostructure (nano-graphite) with the morphology of nanoparticles and nanowires which are composed of graphite nanocrystallites (nc-graphite) was grown on silicon nanoporous pillar array (Si-NPA) by a simple chemical vapor deposition method. The structural characterizations disclosed a complex interface configuration made of nc-graphite, nc-Ni (pre-deposited on Si-NPA as catalyst for nc-graphite growth), nc-NiO2, and nc-Si. The designed nano-graphite/Si-NPA exhibits strong light absorption and sensitive photoresponsivity under low-bias potential in the visible region of 400–800 nm. For example, it shows a switching ratio of 75, a photoresponsivity of ~ 0.16 AW−1 and a rise/fall time of 12.24/5.66 s with an ultralow bias of 0.1 mV under the visible illumination of 5 mWcm−2. The high switching ratio and responsivity were ascribed to the complexity of the interface nanostructures and the formation of a thick and compact graphite nanofilm. The results illustrate that nano-graphite/Si-NPA might be a promising candidate material for fabricating high-performance low-power Si-based visible photodetectors.

Keywords

Graphite Visible photodetector Absorption Photoconductors Composite nanostructures 

Notes

Funding information

The work was supported by the National Natural Science Foundation of China (61774136).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Anilkumar P, Cao L, Yu JJ, Tackett KN, Wang P, Meziani M, Sun YP (2013) Crosslinked carbon dots as ultra-bright fluorescence probes. Small 9:545–551CrossRefGoogle Scholar
  2. Avouris P, Freitag M, Perebeinos V (2008) Carbon-nanotube photonics and optoelectronics. Nat Photonics 2:341–350CrossRefGoogle Scholar
  3. Dresselhaus MS, Dresselhaus G, Hofmann M (2008) Raman spectroscopy as a probe of graphene and carbon nanotubes. Phil Trans R Soc A 366:231–236CrossRefGoogle Scholar
  4. Feng F, Zhi G, Jia HS, Cheng L, Tian YT, Li XJ (2009) SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array. Nanotechnology 20:295501CrossRefGoogle Scholar
  5. Feng J, Chen Y, Han Y, Liu J, Ren C, Chen X (2016) Fluorescent carbon nanoparticles: a low-temperature trypsin-assisted preparation and Fe(3+) sensing. Anal Chim Acta 926:107–117CrossRefGoogle Scholar
  6. Ferrari AC, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamond like carbon. Phys Rev B 64:075414CrossRefGoogle Scholar
  7. Fu WB, Zhao EB, Ren XL, Magasinski A, Yushin G (2018) Hierarchical fabric decorated with carbon nanowire/metal oxide nanocomposites for 1.6 V wearable aqueous supercapacitors. Adv energy mater. Adv Energy Mater 1703454Google Scholar
  8. Han CB, He C, Li XJ (2011) Near-infrared light emission from a GaN/Si nanoheterostructure array. Adv Mater 23:4811–4814CrossRefGoogle Scholar
  9. Hao Y, Wang Y, Wang L, Ni Z, Wang Z, Wang R, Koo CK, Shen Z, Thong JT (2010) Probing layer number and stacking order of few-layer graphene by Raman spectroscopy. Small 6:195–200CrossRefGoogle Scholar
  10. He C, Han CB, Li XJ (2011) Photovoltaic effect of CdS/Si nanoheterojunction array. J Appl Phys 110:094316CrossRefGoogle Scholar
  11. Hossain MM, Ray S, Cheong JS, Liang Q, Baharuddin ANAP, Hella MM, David JPR, Hayat MM (2017) Low-noise speed-optimized large area CMOS avalanche photodetector for visible light communication. J Lightwave Technol 35:2315–2324CrossRefGoogle Scholar
  12. Hu L, Yan J, Liao M, Xiang H, Gong X, Zhang L, Fang X (2012) An optimized ultraviolet-A light photodetector with wide-range photoresponse based on ZnS/ZnO biaxial nanobelt. Adv Mater 24:2305–2309CrossRefGoogle Scholar
  13. Jiang WF, Xiao SH, Feng CY, Li XJ (2007) Resistive humidity sensitivity of arrayed multi-wall carbon nanotube nests grown on arrayed nanoporous silicon pillars. Sens Actuators B-Chem 125:651–658CrossRefGoogle Scholar
  14. Jiang WF, Yang XH, Li LY, Li XJ (2008) Effect of growth temperature on field emission from an array of carbon nanotubes nested into a silicon nanoporous pillar array. Thin Solid Films 517:769–772CrossRefGoogle Scholar
  15. Koppens FHL, Mueller T, Avouris P, Ferrari AC, Vitiello MS, Polini M (2014) Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol 9:780–793CrossRefGoogle Scholar
  16. Kravets VG, Grigorenko AN, Nair RR, Blake P, Anissimova S, Novoselov KS, Geim AK (2010) Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys Rev B 81:155413CrossRefGoogle Scholar
  17. Kwak J, Chu JH, Choi JK, Park SD, Go H, Kim SY, Park K, Kim SD, Kim YW, Yoon E, Kodambaka S, Kwon SY (2012) Near room-temperature synthesis of transfer-free graphene films. Nat Commun 3:645CrossRefGoogle Scholar
  18. Li XJ, Jiang WF (2007) Enhanced field emission from a nest array of multi-walled carbon nanotubes grown on a silicon nanoporous pillar array. Nanotechnol 18:065203CrossRefGoogle Scholar
  19. Li XJ, Chen SJ, Feng CY (2007) Characterization of silicon nanoporous pillar array as room-temperature capacitive ethanol gas sensor. Sens Actuators B-Chem 123:461–465CrossRefGoogle Scholar
  20. Li YT, Xu JM, Tang ZJ, Xu TT, Li XJ (2017) Nearly white light photoluminescence from ZnO/rGO nanocomposite prepared by a one-step hydrothermal method. J Alloys Compounds 715:122–128CrossRefGoogle Scholar
  21. Liu Y, Wang F, Wang X, Wang X, Flahaut E, Liu X, Li Y, Wang X, Xu Y, Shi Y, Zhang R (2015) Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors. Nat Commun 6:8589CrossRefGoogle Scholar
  22. Lu JR, Weng WG, Chen XF, Wu DJ, Wu CL, Chen GH (2005) Piezoresistive materials from directed shear-induced assembly of graphite nanosheets in polyethylene. Adv Funct Mater 15:1358–1363CrossRefGoogle Scholar
  23. Luo T, Liang B, Liu Z, Xie X, Lou Z, Shen G (2015) Single-GaSb-nanowire-based room temperature photodetectors with broad spectral response. Sci Bull 60:101–108CrossRefGoogle Scholar
  24. Mueller T, Xia F, Avouris P (2010) Graphene photodetectors for high-speed optical communications. Nat Photonics 4:297–301CrossRefGoogle Scholar
  25. Rai SC, Wang K, Chen J, Marmon JK, Bhatt M, Wozny S, Zhang Y, Zhou W (2015) Enhanced broad band photodetection through piezo-phototronic effect in CdSe/ZnTe core/shell nanowire array. Adv Electron Mater 1:1400050CrossRefGoogle Scholar
  26. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:3087–3087CrossRefGoogle Scholar
  27. Sang L, Hu J, Zou R, Koide Y, Liao M (2013) Arbitrary multicolor photodetection by hetero-integrated semiconductor nanostructures. Sci Rep 3:2368CrossRefGoogle Scholar
  28. Shahrokhi M, Leonard C (2017) Tuning the band gap and optical spectra of silicon-doped graphene: many-body effects and excitonic states. JAlloys Compd 693:1185–1196CrossRefGoogle Scholar
  29. Sun D, Aivazian G, Jones AM, Ross JS, Yao W, Cobden DH, Xu XD (2012) Ultrafast hot-carrier-dominated photocurrent in graphene. Nat Nanotechnol 7:114–118CrossRefGoogle Scholar
  30. Tian H, Yang Y, Xie D, Cui YL, Mi WT, Zhang YG, Ren TL (2014) Wafer-scale integration of graphene-based electronic, optoelectronic and electroacoustic devices. Sci Rep 4:3598CrossRefGoogle Scholar
  31. Wang X, Cao L, Yang ST, Lu F, Meziani MJ, Tian L, Sun KW, Bloodgood MA, Sun YP (2010) Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew Chem Int Ed Engl 49:5310–5314CrossRefGoogle Scholar
  32. Wang YQ, Ma S, Yang QQ, Li XJ (2015) Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array. Appl Surf Sci 258:5881–5885CrossRefGoogle Scholar
  33. Xia F, Mueller T, Lin YM, Valdes-Garcia A, Avouris P (2009) Ultrafast graphene photodetector. Nat Nanotechno l4:839–843CrossRefGoogle Scholar
  34. Xu HJ, Li XJ (2008) Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence. Opt Express 16:2933–2941CrossRefGoogle Scholar
  35. Yan Z, Peng Z, Sun Z, Yao J, Zhu Y, Liu Z, Ajayan PM, Tour JM (2011) Growth of bilayer graphene on insulating substrates. ACS Nano 5:8187–8192CrossRefGoogle Scholar
  36. Yan LL, Wang XB, Liu WK, Li XJ (2015) Effect of boron doping on the rectification effect and photovoltaic performance of CdS/Si heterostructure based on silicon nanoporous pillar array. J Phys D-Appl Phys 48:265101CrossRefGoogle Scholar
  37. Yu Y, Jiang Y, Zheng K, Zhu Z, Lan X, Zhang Y, Zhang Y, Xuan X (2014) Ultralow-voltage and high gain photoconductor based on ZnS:Ga nanoribbons for the detection of low-intensity ultraviolet light. J Mater Chem C 2:3583CrossRefGoogle Scholar
  38. Zhang F, Ding Y, Zhang Y, Zhang X, Wang ZL (2012) Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO–CdS core–shell micro/nanowire. ACS Nano 6:9229–9236CrossRefGoogle Scholar
  39. Zhang F, Niu S, Guo W, Zhu G, Liu Y, Zhang X, Wang ZL (2013) Piezo-phototronic effect enhanced visible/UV photodetector of a carbon-fiber/ZnO-CdS double-shell microwire. ACS Nano 7:4537–4544CrossRefGoogle Scholar
  40. Zhao B, Zhao JM, Zhang ZM (2014) Enhancement of near-infrared absorption in graphene with metal gratings. Appl Phys Lett 105:031905CrossRefGoogle Scholar
  41. Zheng Z, Gan L, Li H, Ma Y, Bando Y, Golberg D, Zhai T (2015) A fully transparent and flexible ultraviolet-visible photodetector based on controlled electrospun ZnO-CdO heterojunction nanofiber arrays. Adv Funct Mater 25:5885–5894CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Physics and Laboratory of Material PhysicsZhengzhou UniversityZhengzhouPeople’s Republic of China
  2. 2.Electrical Engineering DepartmentZhengzhou Business Technician InstituteZhengzhouPeople’s Republic of China
  3. 3.School of Material Science and EngineeringHenan University of TechnologyZhengzhouPeople’s Republic of China

Personalised recommendations