Advertisement

Enhanced efficiency of PbS quantum dot-sensitized solar cells using plasmonic photoanode

  • Swati Bhardwaj
  • Arnab Pal
  • Kuntal Chatterjee
  • Tushar H Rana
  • Gourav Bhattacharya
  • Susanta Sinha Roy
  • Papia Chowdhury
  • Ganesh D. Sharma
  • Subhayan Biswas
Research Paper
  • 152 Downloads

Abstract

In this report, an effort has been made to develop an efficient PbS quantum dot-sensitized photoanode by simple successive ionic layer adsorption and reduction technique to enhance the overall photovoltaic performance of PbS quantum dot-sensitized solar cells. Three strategies have been adopted for the improvement of the photovoltaic performance of PbS quantum dot-sensitized solar cells, i.e., (i) by incorporation of TiO2-Au nanocomposites, where Au nanoparticles of different sizes are embedded into a TiO2 matrix, and (ii) variation of temperature at which quantum dots are deposited (iii) by postdeposition annealing of QD-sensitized photoanode in Ar atmosphere. We have used electrophoretic deposition technique to develop the nanocomposite-doped photoanode. High-resolution transmission electron microscopy confirms that the Au particles dispersed in the TiO2 matrix vary from 2 to 50 nm and PbS quantum dot size ranges 3.5–6 nm. The optical absorption of PbS quantum dot-sensitized TiO2-Au-incorporated photoanode is substantially enhanced as confirmed from the UV-visible absorption spectra measurements. The current-voltage characteristics of all the plasmonic quantum dot-sensitized solar cells under illumination (100 mW/cm2, AM 1.5) show significant improvement in power conversion efficiency using the abovementioned strategies. The maximum power conversion efficiency observed in PbS quantum dot-based quantum dot-sensitized solar cells is 7.0%. Electroimpedance spectroscopy has been utilized to understand the recombination kinetics in these solar cells.

Keywords

Quantum dot-sensitized solar cells Electrophoretic deposition Gold nanoparticles Energy conversion 

Notes

Funding information

This research is supported by funding from CSIR scheme 03(1304)/13/EMR-II, UGC 42-1069/ 2013 (SR) and LNM Institute of Information Technology, Jaipur.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abbas M-A, Basit M-A, Park T-J, Bang J-H (2015) Enhanced performance of PbS-sensitized solar cells via controlled successive ionic-layer adsorption and reaction. Phys Chem Chem Phys 17:9752–9760.  https://doi.org/10.1039/C5CP00941C CrossRefGoogle Scholar
  2. Amiri O, Niasari M-S, Bagheri S, Yousefi A-T (2016) Enhanced DSSCs efficiency via cooperate co-absorbance (CdS QDs) and plasmonic core-shell nanoparticle (Ag@PVP). Sci Rep 6:25227.  https://doi.org/10.1038/srep25227 CrossRefGoogle Scholar
  3. Basit M-A, Abbas M-A, Jung E-S, Park Y-M, Bang J-H, Park T-J (2016) Strategic PbS quantum dot-based multilayered photoanodes for high-efficiency quantum dot-sensitized solar cells. Electrochim Acta 211:644–651.  https://doi.org/10.1016/j.electacta.2016.06.075 CrossRefGoogle Scholar
  4. Benehkohal N-P, Pedro V-G, Boix P-P, Chavhan S, Zaera R-T, Demopoulos G-P, Seró L-M (2012) Colloidal PbS and PbSeS quantum dot sensitized solar cells prepared by electrophoretic deposition. J Phys Chem C 116:16391–16397.  https://doi.org/10.1021/jp3056009 CrossRefGoogle Scholar
  5. Bhardwaj S, Pal A, Chatterjee K, Chowdhury P, Saha S, Barman A, Rana T-H, Sharma G-D, Biswas S (2017) Electrophoretic deposition of plasmonic nanocomposite for the fabrication of dye-sensitized solar cells. IJPAP 55:73–80Google Scholar
  6. Bhardwaj S, Pal A, Chatterjee K, Rana T-H, Bhattacharya G, Roy S-S, Chowdhury P, Sharma G-D, Biswas S (2018) Significant enhancement of power conversion efficiency of dye-sensitized solar cells by the incorporation of TiO2–Au nanocomposite in TiO2 photoanode. J Mater Sci 53:8460–8473.  https://doi.org/10.1007/s10853-018-2156-0 Google Scholar
  7. Bohren C-F, Huffma D-R (1983) Absorption and scattering of light by small particles. Wiley.  https://doi.org/10.1002/9783527618156
  8. Braga A, Giménez S, Concina I, Vomiero A, Seró I-M (2011) Panchromatic sensitized solar cells based on metal sulfide quantum dots grown directly on nanostructured TiO2 electrodes. J Phys Chem Lett 5:454–460.  https://doi.org/10.1021/jz2000112 CrossRefGoogle Scholar
  9. Carey G-H, Abdelhady A-L, Ning Z, Thon S-M, Bakr O-M, Sargent E-H (2015) Colloidal quantum dot solar cells. Chem Rev 115:12732–12763.  https://doi.org/10.1021/acs.chemrev.5b00063 CrossRefGoogle Scholar
  10. Catchpol K-R, Polman A (2008) Plasmonic solar cells. Opt Exp 16:21793–21800.  https://doi.org/10.1364/OE.16.021793 CrossRefGoogle Scholar
  11. Davis N-J-L-K, Böhm M-L, Tabachnyk M, Wisnivesky-Rocca-Rivarola W, Jellicoe T-C, Ducati C, Ehrler B, Greenham N-C (2015) Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%. Nat Commun 6:8259.  https://doi.org/10.1038/ncomms9259 CrossRefGoogle Scholar
  12. Ding B, Gao T, Wang Y, Waldeck D-H, Leu P-W, Lee J-K (2014) Synergistic effect of surface plasmonic particles in PbS/TiO2 heterojunction solar cells. Sol Energy Mater Sol Cells 128:386–393.  https://doi.org/10.1016/j.solmat.2014.06.001 CrossRefGoogle Scholar
  13. Du J, Du Z, Hu J-S, Pan Z, Shen Q, Sun J, Long D, Dong H, Sun L, Zhong X, Wan L-W (2016) Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J Am Chem Soc 138:4201–4209.  https://doi.org/10.1021/jacs.6b00615 CrossRefGoogle Scholar
  14. Duan J, Zhang H, Tang Q, He B, Yu L (2015) Recent advances in critical materials for quantum dot-sensitized solar cells. J Mater Chem A3:17497–17510.  https://doi.org/10.1039/C5TA03280F CrossRefGoogle Scholar
  15. Ellingson R-J, Beard M-C, Johnson J-C, Yu P, Micic O-I, Nozik A-J, Shabaev A, Efros A-L (2005) Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett 5:865–871.  https://doi.org/10.1021/nl0502672 CrossRefGoogle Scholar
  16. Erwin W-R, Zarick H-F, Taibert E-M, Bardhan R (2016) Light trapping in mesoporous solar cells with plasmonic nanostructures. Energy Environ Sci 9:1577–1601.  https://doi.org/10.1039/C5EE03847B CrossRefGoogle Scholar
  17. Gong J, Sumathy K, Zhou Q-Q-Z (2017) Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew Sust Energy Rev 68:234–246.  https://doi.org/10.1016/2016.09.097 CrossRefGoogle Scholar
  18. Grinis L, Dor S, Ofir A, Elsevier A-Z (2008) Electrophoretic deposition and compression of titania nanoparticle films for dye-sensitized solar cells. J Photochem Photobiol A Chem 198(1):52–59.  https://doi.org/10.1016/j.jphotochem.2008.02.015 CrossRefGoogle Scholar
  19. Huang Z, Zou X (2015) Superior photocurrent of quantum dot sensitized solar cells based on PbS : in/CdS quantum dots. Inte J Photoenergy 657871.  https://doi.org/10.1155/2015/657871, 2015, 1, 9
  20. Huang Z-B, Zou X-P, Zhou H-Q (2013) A strategy to achieve superior photocurrent by Cu-doped quantum dot sensitized solar cells. Mater Lett 95:139–141.  https://doi.org/10.1016/j.matlet.2012.12.095 CrossRefGoogle Scholar
  21. Hwang H-J, Joo S-J, Patil S-A, Kim H-S (2017) Efficiency enhancement in dye-sensitized solar cells using the shape/size-dependent plasmonic nanocomposite photoanodes incorporating silver nanoplates. Nanoscale 9:7960–7969.  https://doi.org/10.1039/C7NR01059A CrossRefGoogle Scholar
  22. Hyun B-R, Zhong Y-W, Bartnik A-C, Sun L, Abruña H-D, Wise F-W, Goodreau J-D, Matthews J-R, Leslie T-M, Borrelli N-F (2008) Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. ACS Nano 2:2206–2212.  https://doi.org/10.1021/nn800336b CrossRefGoogle Scholar
  23. Jiao J, Zhou Z-J, Zhou W-H, Wu S-X (2013) CdS and PbS quantum dots co-sensitized TiO2 nanorod arrays with improved performance for solar cells application. Mater Sci Semicond Process 16(2):435–440.  https://doi.org/10.1016/j.mssp.2012.08.009 CrossRefGoogle Scholar
  24. Jiao S, Wang J, Shen Q, Li Y, Zhong X (2016) Surface engineering of PbS quantum dot sensitized solar cells with a conversion efficiency exceeding 7%. J Mater Chem A 4:7214–7221.  https://doi.org/10.1039/C6TA02465C CrossRefGoogle Scholar
  25. Kamruzzaman M, Zapien JA (2017) Synthesis and characterization of ZnO/ZnSe NWs/PbS QDs solar cell. J Nanopart Res 19:125–136.  https://doi.org/10.1007/s11051-016-3729-y
  26. Kato S, Ono K, Izuishi T, Kuwahara S, Katayama K, Toyoda T, Hayase S, Shen Q (2016) The effect of CdS on the charge separation and recombination dynamics in PbS/CdS double-layered quantum dot sensitized solar cells. Chem Phys 478:159–163CrossRefGoogle Scholar
  27. Kawawaki T, Wang H, Kubo T, Saito K, Nakazaki J, Segawa H, Tatsuma T (2015) Efficiency enhancement of PbS quantum dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes. ACS Nano 9(4):4165–4172.  https://doi.org/10.1021/acsnano.5b00321 CrossRefGoogle Scholar
  28. Kelly L, Coronado E, Zhao L-L, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677.  https://doi.org/10.1021/jp026731y CrossRefGoogle Scholar
  29. Kholmicheva N, Moroz P, Rija U, Bastola E, Uprety P, Liyanage G, Razgoniaev A, Ostrowski A-D, Zamkov M (2014) Plasmonic nanocrystal solar cells utilizing strongly confined radiation. ACS Nano 8(12):12549–12559.  https://doi.org/10.1021/nn505375n CrossRefGoogle Scholar
  30. Kim C-S, Choi H-S, Bang J-H (2014) New insight into copper sulfide electrocatalysts for quantum-dot-sensitized solar cells: composition-dependent electrocatalytic activity and stability. ACS Appl Mater Interfaces 6:22078–22087.  https://doi.org/10.1021/am505473d CrossRefGoogle Scholar
  31. Kim B-S, Neo D-C-J, Hou B, Park J-B, Cho Y, Zhang N, Hong J, Pak S, Lee S, Sohn J-I, Assender H-E, Watt A-A-R, Cha S, Kim J-M (2016) High performance PbS quantum dot/graphene hybrid solar cell with efficient charge extraction. ACS Appl Mater Interfaces 8:13902–13908.  https://doi.org/10.1021/acsami.6b02544 CrossRefGoogle Scholar
  32. Knorr F-J, D. Zhang D, McHale L-J (2007) Influence of TiCl4 treatment on surface defect photoluminescence in pure and mixed-phase nanocrystalline TiO2. Langmuir 23:8686–8690.  https://doi.org/10.1021/la700274k
  33. Kontos A-G, Likodimos V, Vassalou E, Kapogianni I, Raptis Y-S, Raptis C, Falaras P (2011) Nanostructured titania films sensitized by quantum dot chalcogenides. Nanoscale Res Lett 6:266.  https://doi.org/10.1186/1556-276X-6-266 CrossRefGoogle Scholar
  34. Lee J-W, Son D-Y, Ahn T-K, Shin H-W, Kim I-Y, Hwang S-J, Ko M-J, Sul S, Han H, Park N-G (2013) Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent. Sci Rep 3:1050.  https://doi.org/10.1038/2Fsrep01050 CrossRefGoogle Scholar
  35. Li Y, Wang H, Feng Q, Zhou G, Wang Z-S (2013) Gold nanoparticles inlaid TiO2 photoanodes: a superior candidate for high-efficiency dye-sensitized solar cells. Energy Environ Sci 6:2156–2165.  https://doi.org/10.1039/C3EE23971C CrossRefGoogle Scholar
  36. Li X, Suzuki K, Toda T, Yasuda S, Murakoshi K (2015) Plasmonic enhancement of photoenergy conversion in the visible light region using PbS quantum dots coupled with Au nanoparticles. J Phys Chem C 38:22092–22101.  https://doi.org/10.1021/acs.jpcc.5b04693 CrossRefGoogle Scholar
  37. Liu Z, Yuan J, Hawks S-A, Shi G, Lee S-T, Ma W (2017) Photovoltaic devices based on colloidal PbX quantum dots: progress and prospects. Sol RRL 1:1–14.  https://doi.org/10.1002/solr.201600021 Google Scholar
  38. Luo S, Shen H, Hu W, Yao Z, Li Z, Oron D, Wang N, Lin H (2016) Improved charge separation and transport efficiency in panchromatic sensitized solar cells with co-sensitization of PbS/CdS/ZnS quantum dots and dye molecules. RSC Adv 6:21156–21164.  https://doi.org/10.1039/C5RA27514H CrossRefGoogle Scholar
  39. Maier S-A (2007) Plasmonics: fundamentals and applications. Springer.  https://doi.org/10.1007/0-387-37825-1
  40. Manjceevan A, Bandar J (2016) Robust surface passivation of trap sites in PbS q-dots by controlling the thickness of CdS layers in PbS/CdS quantum dot solar cells. Sol Energy Mater Sol Cells 147:157–163.  https://doi.org/10.1016/j.solmat.2015.12.014 CrossRefGoogle Scholar
  41. Mathew S, Yella A, Gao P, Baker R-H, Curchod B-F-E, Ashari-Astani N, Tavernelli L, Rothlisberger U, Nazeeruddin M-K, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247.  https://doi.org/10.1038/nchem.1861 CrossRefGoogle Scholar
  42. Nourolahi H, Bolorizadeh M-A, Dorri N, Behjat A (2017) Enhancement of the performance of cadmium sulfide quantum dot solar cells using a platinum-polyaniline counter electrode and a silver nanoparticle-sensitized photoanode (erratum). J Nanophotonics 11(3):039901.  https://doi.org/10.1117/1.JNP.11.039901 CrossRefGoogle Scholar
  43. Pan S, Zhou R, Niu H, Wan L, Huang B, Huang Y, Jia F, Xu J (2017) Hierarchical SnO2 hollow sub-microspheres for panchromatic PbS quantum dot-sensitized solar cells. J Alloys Compd 709:187–196.  https://doi.org/10.1016/2017.03.147 CrossRefGoogle Scholar
  44. Pandikumar A, Lim S-P, Jayabal S, Huang N-M, Lim H-N, Ramaraj R (2016) Titania@gold plasmonic nanoarchitectures: an ideal photoanode for dye-sensitized solar cells. Renew Sust Energ Rev 60:408–420.  https://doi.org/10.1016/j.rser.2016.01.107 CrossRefGoogle Scholar
  45. Pedro V-G, Sima C, Marzari G, Boix P-P, Giménez S, Shen Q, Dittrich T, Seró I-M (2013) High performance PbS quantum dot sensitized solar cells exceeding 4% efficiency: the role of metal precursors in the electron injection and charge separation. Phys Chem Chem Phys 15:13835–13843.  https://doi.org/10.1039/C3CP51651B CrossRefGoogle Scholar
  46. Peng Z, Liu Y, Chen W, Chen K, Chen J, Chen J (2017) Long wavelength optical absorption and photovoltaic performance enhancement on CuInS2 and PbS quantum dot co-sensitized solar cells. J Alloys Compd 701:131–137.  https://doi.org/10.1016/j.jallcom.2016.12.059 CrossRefGoogle Scholar
  47. Pradhan S, Stavrinadis A, Gupta S, Konstantatos G (2017) Reducing interface recombination through mixed nanocrystal interlayers in PbS quantum dot solar cells. ACS Appl Mater Interfaces 9:27390–27395.  https://doi.org/10.1021/acsami.7b08568 CrossRefGoogle Scholar
  48. Puiso J, Lindroos S, Tamulevičius S, Leskelä M, Snitkad V (2003) Growth of PbS thin films on silicon substrate by SILAR technique. Thin Solid Film 428:223–226.  https://doi.org/10.1016/S0040-6090(01)01662-5 CrossRefGoogle Scholar
  49. Sambur JB, Novet T, Parkinson B-A (2010) Multiple exciton collection in a sensitized photovoltaic system. Science 330:63–66.  https://doi.org/10.1126/science.1191462 CrossRefGoogle Scholar
  50. Sogabe T, Shen Q, Yamaguchia K (2016) Recent progress on quantum dot solar cells. J Photon Energy:6, 040901.  https://doi.org/10.1117/1.6.040901
  51. Solanki C-S, Beaucarne G (2007) Advanced solar cell concepts. Energy Sustain Dev 11(17)Google Scholar
  52. Song D, Li M, Li Y, Zhao X, Jiang B, Jiang Y (2014) Highly transparent and efficient counter electrode using SiO2/PEDOT–PSS composite for bifacial dye-sensitized solar cells. ACS Appl Mater Interfaces 6:7126–7132.  https://doi.org/10.1021/am500082 CrossRefGoogle Scholar
  53. Song D, Cui P, Wang T, Xie B, Jiang Y, Li M, Li Y, Sheng D, He Y, Liu Z, Mbebgue JM (2016) Bunchy TiO2 hierarchical spheres with fast electron transport and large specific surface area for highly efficient dye-sensitized solar cells. Nano Energy 23:122–128.  https://doi.org/10.1016/j.nanoen.2016.03.006 CrossRefGoogle Scholar
  54. Subramanyam P, Kumar P-N, Deepa M, Subrahmanyam C, Ghosal P (2017) Bismuth sulfide nanocrystals and gold nanorods increase the photovoltaic response of a TiO2/CdS based cell. Sol Energy Mater Sol Cells 159:296–306.  https://doi.org/10.1016/j.solmat.2016.09.031 CrossRefGoogle Scholar
  55. Sung S-D, Lim I, Kang P, Lee C, Lee W-I (2013) Design and development of highly efficient PbS quantum dot-sensitized solar cells working in an aqueous polysulfide electrolyte. Chem Commun 49:6054–6056.  https://doi.org/10.1039/C3CC40754C CrossRefGoogle Scholar
  56. Tao L, Xiong Y, Liu H, Shen W (2014) High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO2 nanotube arrays. Nanoscale 6:931–938.  https://doi.org/10.1039/C3NR04461K CrossRefGoogle Scholar
  57. Tian J, Shen T, Liu X, Fei C, Lv L, Cao G (2016) Enhanced performance of PbS-quantum-dot-sensitized solar cells via optimizing precursor solution and electrolytes. Sci Rep 6(23094):1–7.  https://doi.org/10.1038/srep23094 Google Scholar
  58. Underwood D-F, Kippeny T, Rosenthal S-J (2001) Charge carrier dynamics in CdSe nanocrystals: implications for the use of quantum dots in novel photovoltaics. Eur Phy J D 16:241–244.  https://doi.org/10.1007/s100530170101 CrossRefGoogle Scholar
  59. Vokhmintcev K-V, Samokhvalov P-S, Nabiev I (2016) Charge transfer and separation in photoexcited quantum dot-based systems. Nano Today 11:189–211.  https://doi.org/10.1016/j.nantod.2016.04.005 CrossRefGoogle Scholar
  60. Wang H, Barcelo I, Villarreal T-L, Gomez R, Bonn M, Canovas E (2014) Interplay between structure, stoichiometry, and electron transfer dynamics in SILAR-based quantum dot-sensitized oxides. Nano Lett 14:5780–5786.  https://doi.org/10.1021/nl5026634 CrossRefGoogle Scholar
  61. Wang H, Kubo T, Nakazaki J, Segawa H (2017a) Solution-processed short-wave infrared PbS colloidal quantum dot/ZnO nanowire solar cells giving high open-circuit voltage. ACS Energy Lett 2:2110–2117.  https://doi.org/10.1021/acsenergylett.7b00505 CrossRefGoogle Scholar
  62. Wang H, Yang S, Wang Y, Xu J, Huang Y, Li W, He B, Muhammad S, Jiang Y, Tang Y, Zou B (2017b) Influence of post-synthesis annealing on PbS quantum dot solar cells. Org Electron 42:309–315.  https://doi.org/10.1016/j.orgel.2016.12.053 CrossRefGoogle Scholar
  63. Xu W, Tan F, Liu Q, Liu X, Jiang Q, Wei L, Zhang W, Wang Z, Qu S, Wang Z (2017) Efficient PbS QD solar cell with an inverted structure. Sol Energy Mater Sol Cells 159:503–509.  https://doi.org/10.1016/j.solmat.2016.10.006 CrossRefGoogle Scholar
  64. Yan J, Saunders B-R (2014) Controlled aggregation of quantum dot dispersions by added amine bilinkers and effects on hybrid polymer film properties. RSC Adv 4:43286–43314CrossRefGoogle Scholar
  65. Yang J, Choi M, Kim D-H, Hyeon T (2016) Designed assembly and integration of colloidal nanocrystals for device applications. Adv Mater 28:1176–1207.  https://doi.org/10.1002/adma.201502851 CrossRefGoogle Scholar
  66. Ye M, Gao X, Hong X, Liu Q, He C, Liuca X, Lin C (2017) Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes. Sustainable Energy Fuels 1:121.  https://doi.org/10.1039/C7SE00137A Google Scholar
  67. Yuan C, Li L, Huang J, Ning Z, Sun L, Ågren H (2016) Improving the photocurrent in quantum-dot-sensitized solar cells by employing alloy PbxCd1−xS quantum dots as photosensitizers. Nano 6:6.  https://doi.org/10.3390/nano6060097 Google Scholar
  68. Zhao H, Huang F, Hou J, Liu Z, Wu Q, Cao H, Jing Q, Peng S, Cao G (2016) Efficiency enhancement of quantum dot sensitized TiO2/ZnONanorod arrays solar cells by plasmonic Ag nanoparticles. ACS Appl Mater Interfaces 40:26675–26682.  https://doi.org/10.1021/acsami.6b06386 CrossRefGoogle Scholar
  69. Zhu X, Liu Z, Guozheng Jinan S, Wang G-W, Ma W (2017) Photovoltaic devices employing ternary PbSxTe1-x nanocrystals. J Mater Sci Technol 3:418–423.  https://doi.org/10.1016/j.jmst.2017.01.018 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of PhysicsThe LNM Institute of Information TechnologyJaipurIndia
  2. 2.Vidyasagar UniversityMidnaporeIndia
  3. 3.Department of Physics, School of Natural ScienceShiv Nadar UniversityGreater NoidaIndia
  4. 4.Jaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations