Effect of detonation nanodiamond surface composition on physiological indicators of mitochondrial functions

  • Andrey S. SolomatinEmail author
  • Ruslan Y. Yakovlev
  • Vera V. Teplova
  • Nadezhda I. Fedotcheva
  • Mariya N. Kondrachova
  • Inna I. Kulakova
  • Nikolay B. Leonidov
Research Paper


For the first time, an effect of detonation nanodiamonds (NDs) with different surface compositions on the main functional characteristics of isolated rat liver mitochondria was studied. The response of membrane potential, calcium retention capacity, and redox state of pyridine nucleotides have been monitored upon the administration of NDs functionalized with carboxyl, hydroxyl, amine, hydrogen, and chlorine surface groups. Hydrogenated and chlorinated NDs caused reduction of the membrane potential and calcium retention capacity of mitochondria. An aminated ND caused an even greater decrease in calcium retention capacity (at a concentration of 0.75 mg/ml), reducing it to 65% of the control. The use of cyclosporine A prevented a decrease in membrane potential and calcium retention capacity indicating the induction of non-specific mitochondrial membrane pores during the NDs incubation with mitochondria. Hydrogenated and chlorinated NDs had no significant effect on the redox state of mitochondrial pyridine nucleotides. Other NDs studied had no effects on functional characteristics of mitochondria, even at high concentrations (up to 1.5 mg/ml). High activity of chlorinated and hydrogenated NDs may be due to the greater hydrophobicity of their surface and its interaction with mitochondrial pores components. Thus, isolated rat liver mitochondria can be used as a biomodel for initial testing of ND samples to assess the possibility of their use in drug delivery systems.


Nanodiamonds Functionalization of nanodiamonds Rat liver mitochondria Membrane potential Calcium retention capacity Pyridine nucleotides redox state Biomedical applications Drug delivery 



The authors thank Prof. GV Lisichkin (Lomonosov Moscow State University) and Pharm. D. NG Seleznev (RyazGMU named after Pavlov).

Funding information

This work was supported by the Russian Foundation for Basic Research (grants №13-08-00647, 14-03-00423), using equipment purchased from the funds of the Moscow University Development Program.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Babcock DF, Herrington J, Goodwin PC, Park YB, Hille B (1997) Mitochondrial participation in the intracellular Ca2+ network. J Cell Biol 136(4):833–844. CrossRefGoogle Scholar
  2. Balogh PL (ed) (2017) Nanomedicine in cancer. New York: Pan Stanford. ISBN 978-1-315-11436-1 (eBook)Google Scholar
  3. Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T (2006) Multi-walled carbon nanotubes induce T-lymphocyte apoptosis. Toxicol Lett 160:121–126. CrossRefGoogle Scholar
  4. Chan MS, Liu LS, Leung HM, Lo PK (2017) Cancer-cell-specific mitochondria-targeted drug delivery by dual-ligand-functionalized nanodiamonds circumvent drug resistance. ACS Appl Mater Interfaces 9(13):11780–11789. CrossRefGoogle Scholar
  5. Chen LB (1988) Mitochondrial membrane potential in living cells. Ann Rev Cell Biol 4:155–181. CrossRefGoogle Scholar
  6. Chen X, Zhang W (2017) Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem Soc Rev 46(3):734–760. CrossRefGoogle Scholar
  7. Cheung LTY, Manthey AL, Lai JSM, Chiu K (2017) Targeted delivery of mitochondrial calcium channel regulators: the future of glaucoma treatment? Front Neurosci 11:648. CrossRefGoogle Scholar
  8. Chow EK, Zhang X-Q, Chen M, Lam R, Robinson E, Huang H, Schaffer D, Osawa E, Goga A, Ho D (2011) Nanodiamond therapeutic delivery agents mediated enhanced chemoresistant tumor treatment. Sci Trans Med 3(73):73ra21. CrossRefGoogle Scholar
  9. Danilenko VV (2004) On the history of the discovery of nanodiamond synthesis. Phys Solid State 46:595–599. CrossRefGoogle Scholar
  10. Denisov SA, Sokolina GA, Spitsyn BV (2010) Effects of amination and adsorption of ammonia on the electrical conductivity of the detonation nanodiamond powders. IOP Conference Series: Materials Science and Engineering IOP Publishing 16(1):012005.
  11. Dolmatov VY (2007) Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications. Rus Chem Rev 76(4):339–360. CrossRefGoogle Scholar
  12. Dworak N, Wnuk M, Zebrowski J, Bartosz G, Lewinska A (2014) Genotoxic and mutagenic activity of diamond nanoparticles in human peripheral lymphocytes in vitro. Carbon 68:763–776. CrossRefGoogle Scholar
  13. Fedotcheva NI, Teplova VV, Fedotcheva TA, Rzheznikov VM, Shimanovskii NL (2009) Effect of progesterone and its synthetic analogues on the activity of mitochondrial permeability transition pore in isolated rat liver mitochondria. Biochem Pharmacol 78:1060–1068. CrossRefGoogle Scholar
  14. Fresta CG, Chakraborty A, Wijesinghe MB, Amorini AM, Lazzarino G, Lazzarino G, Tavazzi B, Lunte SM, Caraci F, Dhar P, Caruso G (2018) Non-toxic engineered carbon nanodiamond concentrations induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells. Cell Death Dis 9:245. CrossRefGoogle Scholar
  15. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766Google Scholar
  16. Guo C, Wang J, Jing L, Ma R, Liu X, Gao L, Cao L, Duan J, Zhou X, Li Y, Sun Z (2018) Mitochondrial dysfunction, perturbations of mitochondrial dynamics and biogenesis involved in endothelial injury induced by silica nanoparticles. Environ Pollut 236:926–936. CrossRefGoogle Scholar
  17. Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91(3C):14S–22S. CrossRefGoogle Scholar
  18. Hayashi K, Pack CG, Sato MK, Mouri K, Kaizu K, Takahashi K, Okada Y (2013) Viscosity and drag force involved in organelle transport: investigation of the fluctuation dissipation theorem. Eur Phys J E 36:136. CrossRefGoogle Scholar
  19. Hens SC, Cunningham G, Tyler T, Moseenkov S, Kuznetsov V, Shenderova O (2008) Nanodiamond bioconjugate probes and their collection by electrophoresis. Diam Relat Mater 17:1858–1866. CrossRefGoogle Scholar
  20. Ho D, Wang C-HK, Chow EK-H (2015) Nanodiamonds: the intersection of nanotechnology, drug development, and personalized medicine. Sci Adv 1(7):e1500439. CrossRefGoogle Scholar
  21. Hong G, Diao S, Antaris AL, Dai H (2015) Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev 115(19):10816–10906. CrossRefGoogle Scholar
  22. Jakovlev RJ (2013) Nano-diamond conjugate with glycine and method for producing said conjugate. EP 2662080,Google Scholar
  23. Jakovlev RJ, Leonidov NB, Gubanok AI. (2013) Antibacterial agent and method for preparing it. RU Pat 2476215.Google Scholar
  24. Jakovlev RJ, Rodina EV, Valueva AV, Vorob'eva NN, Lisichkin GV, Leonidov NB (2015) Conjugate of nanodiamond with pyrophosphatase and method of obtaining thereof. RU Pat 2542411.Google Scholar
  25. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383. CrossRefGoogle Scholar
  26. Johnson D, Lardy HA (1967) Isolation of liver or kidney mitochondria. Methods Enzymol 10:94–96. CrossRefGoogle Scholar
  27. Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49(2):105–121. CrossRefGoogle Scholar
  28. Karpukhin AV, Avkhacheva NV, Yakovlev RY, Kulakova II, Yashin VA, Lisichkin GV, Safronova VG (2011) Effect of detonation nanodiamonds on phagocyte activity. Cell Biol Int 35:727–733. CrossRefGoogle Scholar
  29. Kaur R, Badea I (2013) Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. Int J Nanomedicine 8:203–220. CrossRefGoogle Scholar
  30. Keremidarska M, Ganeva A, Mitev D, Hikov T, Presker R, Pramatarova L, Krasteva N (2014) Comparative study of cytotoxicity of detonation nanodiamond particles with an osteosarcoma cell line and primary mesenchymal stem cells. Biotechnol Biotechnol Equip 28(4):733–739. CrossRefGoogle Scholar
  31. Kondrashova MN, Fedotcheva NI, Saakyan IR, Sirota TV, Lyamzaev KG, Kulikova MV, Temnov AV (2001) Preservation of native properties of mitochondria in rat liver homogenate. Mitochondrion 1:249–267. CrossRefGoogle Scholar
  32. Korolkov VV, Kulakova II, Tarasevich BN, Lisichkin GV (2007) Dual reaction capacity of hydrogenated nanodiamond. Diam Relat Mater 16(12):2129–2132. CrossRefGoogle Scholar
  33. Kulakova II (2004) Surface chemistry of nanodiamonds. Phys Solid State 46(4):636–643. CrossRefGoogle Scholar
  34. Kulakova II, Korol’kov VV, Yakovlev RY, Lisichkin GV (2010) The structure of chemically modified detonation-synthesized nanodiamond particles. Nanotechnol Russ 5(7–8):474–485. CrossRefGoogle Scholar
  35. Kumari SH, Singh MK, Singh SK, Grácio JJA, Dash D (2013) Nanodiamonds activate blood platelets and induce thromboembolism. Nanomedicine 9(3):427–440. CrossRefGoogle Scholar
  36. Lai L, Li YP, Mei P, Chen W, Jiang FL, Liu Y (2016) Size effects on the interaction of QDs with the mitochondrial membrane in vitro. J Membr Biol 249(6):757–767CrossRefGoogle Scholar
  37. Leonidov NB, Jakovlev RJ, Kulakova IV, Lisichkin GV (2014a) Antihypooxant and method for preparing it. RU Pat 2506074Google Scholar
  38. Leonidov NB, Jakovlev RJ, Kulakova IV, Lisichkin GV (2014b) Anxiolytic and method for preparing it. RU Pat 2519755Google Scholar
  39. Leonidov NB, Jakovlev RJ, Lisichkin GV (2014c) Antipsychotic agent and method for preparing it. RU Pat 2519761Google Scholar
  40. Leonidov NB, Jakovlev RJ, Lisichkin GV (2014d) Agent with anti-stroke action and method for preparing it. RU Pat 2521404Google Scholar
  41. Leonidov NB, Jakovlev RJ, Solomatin AS, Lisichkin GV (2014e) Antidepressant drug and method for preparing it. RU Pat 2519759Google Scholar
  42. Lisichkin GV, Korolґkov VV, Tarasevich BN, Kulakova II, Karpukhin AV (2006) Photochemical chlorination of nanodiamond and interaction of its modified surface with C-nucleophiles. Russ Chem Bull (Int Ed) 55(12):2212–2219. CrossRefGoogle Scholar
  43. Lisichkin GV, Kulakova II, Gerasimov YA, Karpukhin AV, Yakovlev RY (2009) Halogenation of detonation-synthesised nanodiamond surfaces. Mendeleev Commun 19:309–310. CrossRefGoogle Scholar
  44. Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forro L (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6(6):1121–1125. CrossRefGoogle Scholar
  45. Mendes RG, Bachmatiuk A, Buchner B, Cuniberti G, Rummeli MH (2013) Carbon nanostructures as multi-functional drug delivery platforms. J Mater Chem B 1:401–428. CrossRefGoogle Scholar
  46. Mitev DP, Townsend AT, Paull B, Nesterenko PN (2013) Direct sector field ICP-MS determination of metal impurities in detonation nanodiamond. Carbon 60:326–334. CrossRefGoogle Scholar
  47. Mitev DP, Townsend AT, Paull B, Nesterenko PN (2014) Screening of elemental impurities in commercial detonation nanodiamond using sector field inductively coupled plasma-mass spectrometry. J Mater Sci 49:3573–3591. CrossRefGoogle Scholar
  48. Mkandawire M, Pohl A, Gubarevich T, Lapina V, Appelhans D, Rodel G, Pompe W, Shreiber J, Opitz J (2009) Selective targeting of green fluorescent nanodiamond conjugates to mitochondria in HeLa cells. J Biofoton 2(10):596–606. Google Scholar
  49. Munnich A, Rustin P (2001) Clinical and diagnosis of mitochondrial disorders. Am J Med Genet 106(1):4–17. CrossRefGoogle Scholar
  50. Mytych J, Wnuka M, Rattan SIS (2016) Low doses of nanodiamonds and silica nanoparticles have beneficial hormetic effects in normal human skin fibroblasts in culture. Chemosphere 148:307–315. CrossRefGoogle Scholar
  51. Naserzadeh P, Esfeh FA, Kaviani M, Ashtari K, Kheirbakhsh R, Salimi A, Pourahmad J (2018) Single-walled carbon nanotube, multi-walled carbon nanotube and Fe2O3 nanoparticles induced mitochondria mediated apoptosis in melanoma cells. Cutan Ocul Toxicol 37(2):157–166. CrossRefGoogle Scholar
  52. Nebel CE, Rezek B, Shin D, UetsukaH YN (2007) Diamond for bio-sensor applications. J Phys D 40(20):6443–6466. CrossRefGoogle Scholar
  53. Nutt LK, Pataer A, Pahler J, Fang B, Roth J, McConkey DJ, Swisher SG (2002) Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J Biol Chem 277(11):9219–9225. CrossRefGoogle Scholar
  54. Pathak Y, Thassu D. (eds.) (2016). Drug delivery nanoparticles formulation and characterization (Vol. 191). CRC PressGoogle Scholar
  55. Salvi M, Toninello A (2004) Effects of polyamines on mitochondrial Ca2+ transport. Biochim Biophys Acta 1661:113–124. CrossRefGoogle Scholar
  56. Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL, Colvin VL (2004) The differential cytotoxicicty of water-soluble fullerenes. Nano Lett 4(10):1881–1887. CrossRefGoogle Scholar
  57. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191–1212. CrossRefGoogle Scholar
  58. Schrand AM, Huang H, Carlson C, Schlager JJ, Osawa E, Hussain SM, Dai L (2007) Are diamond nanoparticles cytotoxic? J Phys Chem B 111(1):2–7. CrossRefGoogle Scholar
  59. Shenderova OA, Gruen DM (eds.) (2006) Ultrananocrystalline diamond: synthesis, properties, and applications. New York: William Andrew Publ. NorwichGoogle Scholar
  60. Shugalei IV, Voznyakovskii AP, Garabadzhiu AV, Tselinskii IV, Sudarikov AM, Ilyushin MA (2013) Biological activity of detonation nanodiamond and prospects in its medical and biological applications. Russ J Gen Chem 83(5):851–883. CrossRefGoogle Scholar
  61. Smith RAJ, Hartley RC, Cocheme HM, Murphy MP (2012) Mitochondrial pharmacology. Trends Pharmacol Sci 33(6):341–350. CrossRefGoogle Scholar
  62. Solomatin AS, Yakovlev RY, Fedotcheva NI, Kondrachova MN, Leonidov NB (2013) Method of determining biological inequivalence of nanodiamonds. RU Pat 2538611Google Scholar
  63. Szewczyk A, Wojtczak L (2002) Mitochondria as a pharmacological target. Pharmacol Rev 54(1):101–127. CrossRefGoogle Scholar
  64. Thomas V, Halloran BA, Ambalavanan N, Catledge SA, Vohra YK (2012) In vitro studies on the effect of particle size on macrophage responses to nanodiamond wear debris. Acta Biomater 8(5):1939–1947. CrossRefGoogle Scholar
  65. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552(Pt 2):335–344. CrossRefGoogle Scholar
  66. Wehling J, Dringen R, Zare RN, Maas M, Rezwan K (2014) Bactericidal activity of partially oxidized nanodiamonds. ACS Nano 8(6):6475–6483. CrossRefGoogle Scholar
  67. Weng MF, Chang BJ, Chiang SY, Wang NS, Niu H (2012) Cellular uptake and phototoxicity of surface-modified fluorescent nanodiamonds. Diam Relat Mater 22:96–104. CrossRefGoogle Scholar
  68. Whitlow J, Pacelli S, Paul A (2017) Multifunctional nanodiamonds in regenerative medicine: recent advances and future directions. J Control Release 261:62–86. CrossRefGoogle Scholar
  69. Wong BS, Yoong SL, Jagusiak A, Panczyk T, Ho HK, Ang WH, Pastorin G (2013) Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 65(15):1964–2015. CrossRefGoogle Scholar
  70. Yakovlev RY, Osipova OS, Solomatin AS, Kulakova II, Muravyova GP, Avramenko NV, Leonidov NB, Lisichkin GV (2015) An approach to unification of the physicochemical properties of commercial detonation nanodiamonds. Russ J Gen Chem 85(6):1565–1574. CrossRefGoogle Scholar
  71. Yakovlev RY, Solomatin AS, Leonidov NB, Kulakova II, Lisichkin GV (2014) Detonation diamond—a perspective carrier for drug delivery systems. Russ J Gen Chem 84(2):379–390. CrossRefGoogle Scholar
  72. Zhang X, Hu W, Li J, Tao L, Wei Y (2012) A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicol Res 1:62–68.
  73. Zhao X, Ren X, Zhu R, Luo Z, Ren B (2016) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos. Aquat Toxicol 180:56–70. CrossRefGoogle Scholar
  74. Zheng H, Mortensen LJ, Ravichandran S, Bentley K, DeLouise LA (2017) Effect of nanoparticle surface coating on cell toxicity and mitochondria uptake. J Biomed Nanotechnol 13(2):155–166. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Pavlov Ryazan State Medical UniversityRyazanRussia
  2. 2.Faculty of ChemistryLomonosov Moscow State UniversityMoscowRussia
  3. 3.Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of SciencesMoscowRussia
  4. 4.Institute of Theoretical and Experimental Biophysics of the Russian Academy of SciencesPushchinoRussia

Personalised recommendations