Plasmonic effects in composite metal nanostructures for sensing applications

  • Yuan-Fong Chou Chau
  • Chung-Ting Chou Chao
  • Hai-Pang ChiangEmail author
  • Chee Ming Lim
  • Nyuk Yoong Voo
  • Abdul Hanif Mahadi
Research Paper


We have investigated numerically the plasmonic effect on a two-dimensional periodic array of metallic nanostructures. The unit cell of the array has an Ag nanosphere and nanorod pair formed in a single structure. Three-dimensional finite element method is used for the study on the sensing performance within the optical spectra. The study takes into account the influences of the structural and material parameters, the rotational angle of the metal nanostructure, the number of metal nanostructure per unit cell, and the localized surface plasmon resonances. The proposed nanostructures function as a refractive index sensor with a sensitivity of 400 nm/RIU (RIU is the refractive index unit), showing the characteristics of low transmittance (T = 3.90%), high absorptance (A = 94.5%), and near-zero reflectance (R = 0.15%), could be achieved by a triangular arrangement of nanostructures within a unit cell. We also show how the tailoring of the structural parameters relates to the specific sensing schematics of the sensor.

Graphical abstract

x-y sectional plane of electric field intensity, electric force lines (pink lines), energy flows (green arrows) and surface charge density of type 2, corresponding to the surrounding testing medium of (a) n=1.00 and (b) n=1.33 around the PMNSs.


Composite metal nanostructures Plasmonic sensor Metal nanoparticles Modeling and simulation 



This work was supported by the University Research Grant of Universiti Brunei Darussalam (grant no. UBD/OAVCRI/CRGWG (004)/170101) and Ministry of Science and Technology of Taiwan (MOST 106-2112-M-019-005-MY3).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aizpurua J, Bryant GW, Richter LJ, Abajo FJGD, Kelley BK, Mallouk T (2005) Optical properties of coupled nanoscale metallic rods for field-enhanced spectroscopy. Phys Rev B 71:235420CrossRefGoogle Scholar
  2. Angelis FD, Malerba M, Patrini M, Miele E, Das G, Toma A, Zaccaria RP, Fabrizio ED (2013) 3D hollow nanostructures as building blocks for multifunctional plasmonics. Nano Lett 13:3553–3558CrossRefGoogle Scholar
  3. Brian GMM, Berlouis LEA, Cruickshank FR, Pugh D, Brevet P-F (2005) Transverse and longitudinal surface plasmon resonances of a hexagonal array of gold nanorods embedded in an alumina matrix. Appl Phys Lett 86:211912CrossRefGoogle Scholar
  4. Cai L, Li G, Xiao F, Wang Z, Xu A (2010) Theory of enhanced optical transmission through a metallic nano-slit surrounded with asymmetric grooves under oblique incidence. Opt Express 18:19495–19503CrossRefGoogle Scholar
  5. Chau YF (2009) Surface plasmon effects excited by the dielectric hole in a silver-Shell Nanospherical pair. Plasmonics 4:253–259CrossRefGoogle Scholar
  6. Chau YF, Yeh HH, Tsai DP (2010) Surface plasmon resonances effects on different patterns of solid-silver and silver-shell nanocylindrical pairs. J Electromagn Waves Appl 24:1005–1014CrossRefGoogle Scholar
  7. Chau YF, Yeh HH (2011) A comparative study of solid-silver and silver-shell nanodimers on surface plasmon resonances. J Nanopart Res 13:637–644CrossRefGoogle Scholar
  8. Chau YF, Jiang ZH (2011) Plasmonics effects of nanometal embedded in a dielectric substrate. Plasmonics 6:581–589CrossRefGoogle Scholar
  9. Chau YF, Jheng CY, Joe SF, Wang SF, Yang W, Jheng SC, Sun YS, Chu Y, Wei JH (2013) Structurally and materially sensitive hybrid surface plasmon modes in periodic silver-shell nanopearl and its dimer arrays. J Nanopart Res 15:1424CrossRefGoogle Scholar
  10. Chau YF, Yeh HH, Tsai DP (2009) Surface plasmon effects excitation from three-pair arrays of silver-shell nanocylinders. Phys Plasmas 16:022303CrossRefGoogle Scholar
  11. Chiang HP, Lin JL, Chen ZW (2006) High sensitivity surface plasmon resonance sensor based on phase interrogation at optimal incident wavelengths. App Phys Lett 88:141105CrossRefGoogle Scholar
  12. Chen MW, Chau YF, Tsai DP (2008) Three-dimensional analysis of scattering field interactions and surface plasmon resonance in coupled silver nanospheres. Plasmonics 3:157–164CrossRefGoogle Scholar
  13. Chou Chau YF, Lim CM, Lee C, Huang HJ, Lin CT, Kumara NTRN, Voo NY, Chiang HP (2016c) Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod. J Appl Phys 120:093110CrossRefGoogle Scholar
  14. Chou Chau YF, Chou Chao CT, Rao JY, Chiang HP, Lim CM, Lim RC, Voo NY (2016a) Tunable optical performances on a periodic array of plasmonic bowtie nanoantennas with hollow cavities. Nanoscale Res Lett 11: 411Google Scholar
  15. Chou Chau YF, Jiang JC, Chao C, CT Chiang HP, Lim CM (2016b) Manipulating near field enhancement and optical spectrum in a pair-array of the cavity resonance based plasmonic nanoantennas. J Phys D Appl Phys 49:475102CrossRefGoogle Scholar
  16. Chou Chau YF, Wang CK, Shen LF, Lim CM, Chiang HP, Chou Chao CT, Huang HJ, Lin CT, Kumara NTRN, Voo NY (2017) Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays. Sci Rep 7:16871CrossRefGoogle Scholar
  17. Chu HO, Song S, Li C, Gibson D (2017) Surface enhanced Raman scattering substrates made by oblique angle deposition: methods and applications. Coatings 7:26CrossRefGoogle Scholar
  18. Chung T, Koker T, Pinaud F (2017) Gold nanorod/nanosphere clustering by split-GFP fragment assembly for tunable nearinfrared SERS detections. Opt Mater Express 7:3270–3283CrossRefGoogle Scholar
  19. Chung HY, Chen CC, Wu PC, Tseng ML, Lin WC, Chen CW, Chiang HP (2014) Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using blique deposited silver nanorods. Nanoscale Res Lett 9:476CrossRefGoogle Scholar
  20. Gresho PM, Sani RL (2000) Incompressible flow and finite element method, vol 1, 2. Wiley, New YorkGoogle Scholar
  21. Hairer E, Lubich C, Wanner G (2006) Geometric Numerical Integration, Springer, BerlinGoogle Scholar
  22. Ho YZ, Chen WT, Huang YW, Wu PC, Tseng ML, Wang YT, Chau YF, Tsai DP (2012) Tunable plasmonic resonance arising from broken-symmetric silver nanobeads with dielectric cores. J Opt 14:114010CrossRefGoogle Scholar
  23. Horprathum M, Eiamchai Kaewkhao P, Chananonnawathorn J, Patthanasettakul CV, Limwichean S, Nuntawong N, Chindaudom P (2014) Fabrication of nanostructure by physical vapor deposition with glancing angle deposition technique and its applications. AIP Conference Proceedings 1617:7CrossRefGoogle Scholar
  24. Hu CC, Yang W, Tsai YT, Chau YF (2014) Gap enhancement and transmittance spectra of a periodic bowtie nanoantenna array buried in a silica substrate. Opt Commun 2014(324):227–233Google Scholar
  25. Huang HJ, Liu BH, Su J, Chen PJ, Lin CT, Chiang HP, Kao TS, Chau YF, Kei CC, Hwang CH (2017) Light energy transformation over a few nanometers. J Phys D Appl Phys 50:375601CrossRefGoogle Scholar
  26. Jen YJ, Liu WC, Chao JH, Huang JW, Chang YT (2014b) Strong light coupling effect for a glancing-deposited silver. Nanoscale Res Lett 9:567CrossRefGoogle Scholar
  27. Jen YJ, Lin MJ, Chau YF, Jheng CY (2014a) Deposition of Ta2O5 upon silver nanorods as an ultra-thin light absorber. Thin Solid Films 567:38–46CrossRefGoogle Scholar
  28. Jeong HH, Mark AG, Alarco’n-Correa M, Kim I, Oswald P, Lee TC, Fischer P (2016) Dispersion and shape engineered plasmonic nanosensors. Nat Commun 7:11331CrossRefGoogle Scholar
  29. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  30. Ju J, Byeon E, Han YA, Kim SM (2013) Fabrication of a substrate for Ag-nanorod metal-enhanced fluorescence using the oblique angle deposition process. Micro Nano Lett 8:370–373CrossRefGoogle Scholar
  31. Kesapragada SV, Gall D (2006) Anisotropic broadening of Cu nanorods during glancing angle deposition. Appl Phys Lett 89:203121CrossRefGoogle Scholar
  32. Kumara NTRN, Chou Chau CC, Huang JW, Huang HJ, Lin CT, Chiang HP (2016) Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications. J Opt 18:115003CrossRefGoogle Scholar
  33. Kwon MS, Ku B, Kim Y (2016) Plasmofluidic disk resonators. Sci Rep 6:23149CrossRefGoogle Scholar
  34. Lai CH, Wang GA, Ling TK, Wang TJ, Chiu PK, Chou Chau YF, Huang CC, Chiang HP (2017) Near infrared surface-enhanced Raman scattering based on starshaped gold/silver nanoparticles and hyperbolic metamaterial. Sci Rep 7:5446CrossRefGoogle Scholar
  35. Langer J, Novikov SM, Liz-Marzán LM (2015) Sensing using plasmonic nanostructures and nanoparticles. Nanotechnology 26:322001CrossRefGoogle Scholar
  36. Li YF (2015) Broadband unidirectional cloaks based on flat metasurface focusing lenses. J Phys D Appl Phys 48:335101CrossRefGoogle Scholar
  37. Li X, Zhu J, Wei B (2016) Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem Soc Rev 45:3145–3187CrossRefGoogle Scholar
  38. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348CrossRefGoogle Scholar
  39. Lu X, Zhang L, Zhang T (2015) Nanoslit-microcavity-based narrow band absorber for sensing applications. Opt Express 23:20715–20720CrossRefGoogle Scholar
  40. Miyamaru F, Morita H, Nishiyama Y, Nishida T, Nakanishi T, Kitano M, Takeda MW (2014) Ultrafast optical control of group delay of narrow-band terahertz waves. Sci Rep 4:4346CrossRefGoogle Scholar
  41. Murai S, Sakamoto H, Fujita K, Tanaka K (2016) Mesoporous silica layer on plasmonic array: light trapping in a layer with a variable index of refraction. Opt Mater Express 6:2736–2744CrossRefGoogle Scholar
  42. Sánchez-Dena O et al (2013) Size- and shape-dependent nonlinear optical response of Au nanoparticles embedded in sapphire. Opt Mater Express 4:92–100CrossRefGoogle Scholar
  43. Shen Y, Zhou J, Liu T, Tao Y, Jiang R, Liu M, Xiao G, Zhu J, Zhou ZK, Wang X, Jin C, Wang J (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 4:2381CrossRefGoogle Scholar
  44. Su LC, Chen RC, Li YC, Chang YF, Lee YJ, Lee CC, Chou C (2010) Detection of prostate-specific antigen with a paired surface. Plasma wave biosensor. Anal Chem 82:3714–3718CrossRefGoogle Scholar
  45. Tsuji M, Gomi S, Maeda Y, Matsunaga M, Hikino S, Uto K, Tsuji T, Kawazumi H (2012) Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H2O2. Langmuir 28:8845–8861CrossRefGoogle Scholar
  46. Wei G, Wang J, Chen Y (2015) Electromagnetic enhancement of ordered silver nanorod arrays evaluated by discrete dipole approximation. Beilstein J Nanotechnol 6:686–696CrossRefGoogle Scholar
  47. Wu D, Liu Y, Yu L, Yu Z, Chen L, Li R, Ma R, Liu C, Zhang J, Ye H (2017) Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor. Sci Rep 7:45210CrossRefGoogle Scholar
  48. Xu X, Yang Q, Wattanatorn N, Zhao C, Chiang N, Jonas SJ, Paul SW (2017) Multiple-patterning nanosphere lithography for fabricating periodic three-dimensional hierarchical nanostructures. ACS Nano11: 10384–10391Google Scholar
  49. Yang Y, Hu Z, Wang Y, Wang B, Zhan Q, Zhang Y, Ao X (2016) Broadband SERS substrates by oblique angle deposition method. Opt Mater Express 6:2644–2654CrossRefGoogle Scholar
  50. Yang W, Chou Chau YF, Jheng SC (2013) Analysis of transmittance properties of surface plasmon modes on periodic solid/outline bowtie nanoantenna arrays. Phys Plasmas 20:064503CrossRefGoogle Scholar
  51. Zhao J, Cao S, Liao C, Wang Y, Wang G, Xu X, Fu C, Xu G, JLian J, Wang Y (2016) Surface plasmon resonance refractive sensor based on silver-coatedside-polished fiber. Sensors Actuators B 230:206–211CrossRefGoogle Scholar
  52. Zhu J, Zhang F, Li JJ, Zhao JW (2014) The effect of nonhomogeneous silver coating on the plasmonic absorption of au–ag core–shell nanorod. Gold Bull 47:47–55CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Centre for Advanced Material and Energy SciencesUniversiti Brunei DarussalamGadongNegara Brunei Darussalam
  2. 2.Department of PhysicsFu Jen Catholic UniversityNew Taipei CityTaiwan
  3. 3.Institute of Optoelectronic SciencesNational Taiwan Ocean UniversityKeelungTaiwan

Personalised recommendations