Structural, optical, electronic, and magnetic properties of Ag-Cu bimetallic clusters: a density functional theory study

  • Li Wei-yinEmail author
  • Zhang Sha
  • Hai Lian
Research Paper


In this study, the structural, optical, electronic, and magnetic properties of AgmCun (m + n = 3 to 6) bimetallic clusters were systematically investigated by density functional theory in the theoretical framework of the generalized gradient approximation exchange-correlation functional. The results show that the ground state structures of these clusters are planar structures, with triangular geometries for three-atom Ag-Cu clusters, rhombic geometries for four-atom Ag-Cu clusters, trapezoids for five-atom Ag-Cu clusters, and triangular geometries for six-atom Ag-Cu clusters. The Ag2Cu2, Ag2Cu3, and Ag3Cu3 clusters are the geometric magic clusters for four-, five-, and six-atom Ag-Cu clusters, respectively. As the number of Cu atoms increases, the vertical ionization potential values of the four- to six-atom Ag-Cu clusters increase, while the vertical electron affinity values of the three- to five-atom Ag-Cu clusters decrease. Compared to pure Ag clusters, the main absorption peaks of the Ag-Cu clusters of the same number of atoms appear to blueshift. The even-numbered clusters exhibit no magnetic moments, while the odd-numbered clusters exhibit large magnetic moments of 1.00 μB. The magnetic moments of these Ag-Cu clusters are believed to be related to the atom sites.


Ag-Cu cluster Stability Optics Magnetism Modeling and simulation 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 11764001 and 11647009), the Ningxia first-class discipline and scientific research projects (electronic science and technology) (Grant No. NXYLXK2017A07), the Initial Research Program of North Minzu University (Grant No. 2016DX011), Scientific Research Project of Ningxia High Education Institutions (Grant No. NGY2017167), and the Talent Project Fund of North Minzu University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2018_4292_MOESM1_ESM.doc (2.3 mb)
ESM 1 (DOC 2375 kb)


  1. Bechthold PS, Kettler U, Krasser W (1985) Trapping-site effects in resonance Raman-spectra of Ag2 molecules isolated in rare-gas matrices. Surf Sci 156:875–882. CrossRefGoogle Scholar
  2. Bishea GA, Arrington CA, Behm JM, Morse MD (1991a) Resonant two-photon ionization spectroscopy of coinage metal trimers: Cu2Ag, Cu2Au, and CuAgAu. J Chem Phys 95:8765–8778. CrossRefGoogle Scholar
  3. Bishea GA, Marak N, Morse MD (1991b) Spectroscopic studies of jet-cooled CuAg. J Chem Phys 95:5618–5629. CrossRefGoogle Scholar
  4. Bochicchio D, Ferrando R (2010) Size-dependent transition to high-symmetry chiral structures in AgCu, AgCo, AgNi, and AuNi Nanoalloys. Nano Lett 10:4211–4216. CrossRefGoogle Scholar
  5. Bochicchio D, Ferrando R (2012) Structure and thermal stability of AgCu chiral nanoparticles. Eur Phys J D 66:115. CrossRefGoogle Scholar
  6. Cazayous M, Langlois C, Oikawa T, Ricolleau C, Sacuto A (2006) Cu-Ag core-shell nanoparticles: a direct correlation between micro-Raman and electron microscopy. Phys Rev B 73:113402. CrossRefGoogle Scholar
  7. Cheeseman MA, Eyler JR (1992) Ionization-potentials and reactivity of coinage metal-clusters. J Phys Chem-Us 96:1082–1087. CrossRefGoogle Scholar
  8. Chen F, Johnston RL (2007) Structure and spectral characteristics of the nanoalloy Ag3Au10. Appl Phys Lett 90:153123. CrossRefGoogle Scholar
  9. Chen F, Johnston RL (2008) Charge transfer driven surface segregation of gold atoms in 13-atom Au-Ag nanoalloys and its relevance to their structural, optical and electronic properties. Acta Mater 56:2374–2380. CrossRefGoogle Scholar
  10. Delley B (1990) An all-Electron numerical-method for solving the local density functional for polyatomic-molecules. J Chem Phys 92:508–517. CrossRefGoogle Scholar
  11. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764. CrossRefGoogle Scholar
  12. Delley B (2002) Hardness conserving semilocal pseudopotentials. Phys Rev B 66:155125. CrossRefGoogle Scholar
  13. Delley B (2010) Time dependent density functional theory with DMol3. J Phys-Condens Mat 22:384208. CrossRefGoogle Scholar
  14. Die D, Zheng BX, Zhao LQ, Zhu QW, Zhao ZQ (2016) Insights into the structural, electronic and magnetic properties of V-doped copper clusters: comparison with pure copper clusters. Sci Rep-Uk 6:31978. CrossRefGoogle Scholar
  15. Die D, Zheng BX, Kuang XY, Zhao ZQ, Guo JJ, Du Q (2017) Exploration of the structural, electronic and tunable magnetic properties of Cu4M (M = Sc-Ni) clusters. Materials 10:946. CrossRefGoogle Scholar
  16. Fedrigo S, Harbich W, Buttet J (1993) Collective dipole oscillations in small silver clusters embedded in rare-gas matrices. Phys Rev B 47:10706–10715. CrossRefGoogle Scholar
  17. Franzreb K, Wucher A, Oechsner H (1990) Electron impact ionization of small silver and copper clusters. Z Phys D 17:51–56. CrossRefGoogle Scholar
  18. Guzmán-Ramírez G, Robles J, Aguilera-Granja F (2016) Structure and electronic behavior of 26-atom Cu-Ag and Cu-Au nanoalloys. The European Physical Journal D 70:194. CrossRefGoogle Scholar
  19. Harb M, Rabilloud F, Simon D, Rydlo A, Lecoultre S, Conus F, Rodrigues V, Felix C (2008) Optical absorption of small silver clusters: Agn, (n=4-22). J Chem Phys 129:194108. CrossRefGoogle Scholar
  20. Heard CJ, Johnston RL (2013) A density functional global optimisation study of neutral 8-atom Cu-Ag and Cu-Au clusters. Eur Phys J D 67:34. CrossRefGoogle Scholar
  21. Ho J, Ervin KM, Lineberger WC (1990) Photoelectron spectroscopy of metal cluster anions: Cun, Agn, and Aun. J Chem Phys 93:6987–7002. CrossRefGoogle Scholar
  22. Huang T, Murray RW (2001) Visible luminescence of water-soluble monolayer- protected gold clusters. J Phys Chem B 105:12498–12502. CrossRefGoogle Scholar
  23. Idrobo JC, Ogut S, Jellinek J (2005) Size dependence of the static polarizabilities and absorption spectra of Agn (n=2–8) clusters. Phys Rev B 72:085445. CrossRefGoogle Scholar
  24. Jackschath C, Rabin I, Schulze W (1992) Electron impact ionization of silver clusters Agn, n≤36. Z. Phys D 22:517–520. CrossRefGoogle Scholar
  25. Jiang ZY, Lee KH, Li ST, Chu SY (2006) Structures and charge distributions of cationic and neutral Cun-1Ag clusters (n=2-8). Phys Rev B 73:235423. CrossRefGoogle Scholar
  26. Kilimis DA, Papageorgiou DG (2010) Structural and electronic properties of small bimetallic Ag-Cu clusters. Eur Phys J D 56:189–197. CrossRefGoogle Scholar
  27. Knickelbein MB (1992) Electronic shell structure in the ionization potentials of copper clusters. Chem Phys Lett 192:129–134. CrossRefGoogle Scholar
  28. Lecoultre S, Rydlo A, Buttet J, Felix C, Gilb S, Harbich W (2011a) Ultraviolet-visible absorption of small silver clusters in neon: Agn (n=1-9). J Chem Phys 134:184504. CrossRefGoogle Scholar
  29. Lecoultre S, Rydlo A, Felix C, Buttet J, Gilb S, Harbich W (2011b) Optical absorption of small copper clusters in neon: Cun (n=1-9). J Chem Phys 134:074303. CrossRefGoogle Scholar
  30. Li W, Chen F (2013) A density functional theory study of structural, electronic, optical and magnetic properties of small Ag-Cu nanoalloys. J Nanopart Res 15:1809. CrossRefGoogle Scholar
  31. Li W, Chen F (2014a) Effect of multiple exciton generation on ultraviolet-visible absorption of Ag–Cu clusters: ab initio study. J Alloy Compd 607:238–244. CrossRefGoogle Scholar
  32. Li W, Chen F (2014b) Effects of shape and dopant on structural, optical absorption, Raman, and vibrational properties of silver and copper quantum clusters: a density functional theory. Chin Phys B 23:117103. CrossRefGoogle Scholar
  33. Li W, Chen F (2014c) Multiple exciton generation in Ag and Ag–Cu quantum clusters by visible wavelength excitation. J Nanopart Res 16:2498. CrossRefGoogle Scholar
  34. Li W, Chen F (2014d) Optical, Raman and vibrational properties of closed shell Ag–Cu clusters from density functional theory: the influence of the atomic structure, exchange-correlation approximations and pseudopotentials. Phys B 443:6–23. CrossRefGoogle Scholar
  35. Li W, Chen F (2014e) Structural, electronic and optical properties of 7-atom Ag-Cu nanoclusters from density functional theory. Eur Phys J D 68:91. CrossRefGoogle Scholar
  36. Link S, Beeby A, FitzGerald S, El-Sayed MA, Schaaff TG, Whetten RL (2002) Visible to infrared luminescence from a 28-atom gold cluster. J Phys Chem B 106:3410–3415. CrossRefGoogle Scholar
  37. Ma WQ, Chen FY (2012) Optical and electronic properties of Cu doped Ag clusters. J Alloy Compd 541:79–83. CrossRefGoogle Scholar
  38. Morse MD (1986) Clusters of transition-metal atoms. Chem Rev 86:1049–1109. CrossRefGoogle Scholar
  39. Nunez S, Johnston RL (2010) Structures and chemical ordering of small Cu-Ag clusters. J Phys Chem C 114:13255–13266. CrossRefGoogle Scholar
  40. Ogut S, Idrobo JC, Jellinek J, Wang JL (2006) Structural, electronic, and optical properties of noble metal clusters from first principles. J Clust Sci 17:609–626. CrossRefGoogle Scholar
  41. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. CrossRefGoogle Scholar
  42. Ramakrishna G, Varnavski O, Kim J, Lee D, Goodson T (2008) Quantum-sized gold clusters as efficient two-photon absorbers. J Am Chem Soc 130:5032–5033. CrossRefGoogle Scholar
  43. Rao Y, Lei YM, Cui XY, Liu ZW, Chen FY (2013) Optical and magnetic properties of Cu-doped 13-atom Ag nanoclusters. J Alloy Compd 565:50–55. CrossRefGoogle Scholar
  44. Shin K, Kim DH, Yeo SC, Lee HM (2012) Structural stability of AgCu bimetallic nanoparticles and their application as a catalyst: a DFT study. Catal Today 185:94–98. CrossRefGoogle Scholar
  45. Spasov VA, Lee T-H, Ervin KM (2000) Threshold collision-induced dissociation of anionic copper clusters and copper cluster monocarbonyls. J Chem Phys 112:1713–1720. CrossRefGoogle Scholar
  46. Tiago ML, Idrobo JC, Ogut S, Jellinek J, Chelikowsky JR (2009) Electronic and optical excitations in Agn clusters (n=1–8): comparison of density-functional and many-body theories. Phys Rev B 79:155419. CrossRefGoogle Scholar
  47. Weltner W, Zee RJV (1984) Transition metal molecules. Annu Rev Phys Chem 35:291–327. CrossRefGoogle Scholar
  48. Yabana K, Bertsch GF (1999) Optical response of small silver clusters. Phys Rev A 60:3809–3814. CrossRefGoogle Scholar
  49. Yan J, Gao SW (2008) Plasmon resonances in linear atomic chains: free-electron behavior and anisotropic screening of d electrons. Phys Rev B 78:235413. CrossRefGoogle Scholar
  50. Zhu MZ, Aikens CM, Hendrich MP, Gupta R, Qian HF, Schatz GC, Jin RC (2009) Reversible switching of magnetism in thiolate-protected Au-25 Superatoms. J Am Chem Soc 131:2490–2492. CrossRefGoogle Scholar
  51. Zhu B, Die D, Li RC, Lan H, Zheng BX, Li ZQ (2017) Insights into the structural, electronic and magnetic properties of Ni-doped gold clusters: comparison with pure gold clusters. J Alloy Compd 696:402–412. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Electrical and Information EngineeringNorth Minzu UniversityYinchuanChina

Personalised recommendations