Advertisement

Intrinsic damping for ultrafast laser-excited acoustic vibrations of single gold nanorods

  • Yong Gan
  • Zheng Sun
Research Paper

Abstract

The intrinsic damping for the acoustic vibrations of single gold nanorods excited by ultrafast laser has been studied through the atomistic simulations. It is shown that the intrinsic damping for the breathing mode is strongly sensitive to the nanorod sizes, which is very likely due to the different energy redistributions between the vibrational modes of nanorods and could play a non-negligible role in the broad distribution of the experimentally measured breathing-mode quality factors. In comparison, the intrinsic damping for the extensional vibration of gold nanorods appears much less influenced by the variations of nanorod dimensions. Moreover, we also find that the intrinsic mechanism is a significant source for the vibrational damping of gold nanorods, particularly for the breathing mode.

Keywords

Gold nanorod Acoustic vibration Damping Ultrafast laser Molecular dynamics Modeling and simulation 

Notes

Funding

This work was supported by Zhejiang Provincial Natural Science Foundation of China (No. LY17A020006).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Allen MP, Tildesley DJ (1987) Computer simulation of molecular liquids. Oxford University PressGoogle Scholar
  2. Anisimov SI, Kapeliovich BL, Perelman TL (1974) Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov Phys JETP 39:375Google Scholar
  3. Crut A, Maioli P, Fatti ND, Vallée F (2015a) Time-domain investigation of the acoustic vibrations of metal nanoparticles: size and encapsulation effects. Ultrasonics 56:98–108.  https://doi.org/10.1016/j.ultras.2014.02.013 CrossRefGoogle Scholar
  4. Crut A, Maioli P, Fatti ND, Vallée F (2015b) Acoustic vibrations of metal nano-objects: time-domain investigations. Phy Rep 549:1–43.  https://doi.org/10.1016/j.physrep.2014.09.004 CrossRefGoogle Scholar
  5. Ferrando R (2015) Symmetry breaking and morphological instabilities in core-shell metallic nanoparticles. J Phys Condens Matter 27:013003.  https://doi.org/10.1088/0953-8984/27/1/013003 CrossRefGoogle Scholar
  6. Gan Y, Jiang S (2013) Ultrafast laser-induced premelting and structural transformation of gold nanorod. J Appl Phys 113:73507.  https://doi.org/10.1063/1.4792659 CrossRefGoogle Scholar
  7. Gan Y, Sun Z, Chen Z (2015a) Extensional vibration and size-dependent mechanical properties of single-crystal gold nanorods. J Appl Phys 118:164304.  https://doi.org/10.1063/1.4934643 CrossRefGoogle Scholar
  8. Gan Y, Wang C, Chen Z (2015b) Ultrafast laser-excited vibration and elastic modulus of individual gold nanorods. Opt Lett 40:340–343.  https://doi.org/10.1364/OL.40.000340 CrossRefGoogle Scholar
  9. Gan Y, Sun Z, Chen Z (2016) Breathing mode vibrations and elastic properties of single-crystal and penta-twinned gold nanorods. Phys Chem Chem Phys 18:22590–22598.  https://doi.org/10.1039/C6CP03182J CrossRefGoogle Scholar
  10. Grochola G, Russo SP, Snook IK (2005) On fitting a gold embedded atom method potential using the force matching method. J Chem Phys 123:204719.  https://doi.org/10.1063/1.2124667 CrossRefGoogle Scholar
  11. Hartland GV (2006) Coherent excitation of vibrational modes in metallic nanoparticles. Annu Rev Phys Chem 57:403–430.  https://doi.org/10.1146/annurev.physchem.57.032905.104533 CrossRefGoogle Scholar
  12. Hartland GV (2011) Optical studies of dynamics in noble metal nanostructures. Chem Rev 111:3858–3887.  https://doi.org/10.1021/cr1002547 CrossRefGoogle Scholar
  13. Hu M, Wang X, Hartland GV, Mulvaney P, Juste JP, Sader JE (2003) Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis. J Am Chem Soc 125:14925–14933.  https://doi.org/10.1021/ja037443y CrossRefGoogle Scholar
  14. Huang X, Neretina S, El Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910.  https://doi.org/10.1002/adma.200802789 CrossRefGoogle Scholar
  15. Lin Z, Zhigilei LV, Celli V (2008) Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys Rev B 77:75133.  https://doi.org/10.1103/PhysRevB.77.075133 CrossRefGoogle Scholar
  16. Mahmoud MA, O’Neil D, El-Sayed MA (2014) Shape-and symmetry-dependent mechanical properties of metallic gold and silver on the nanoscale. Nano Lett 14:743–748.  https://doi.org/10.1021/nl4040362 CrossRefGoogle Scholar
  17. Major TA, Crut A, Gao B, Lo SS, Del Fatti N, Vallée F, Hartland GV (2013) Damping of the acoustic vibrations of a suspended gold nanowire in air and water environments. Phys Chem Chem Phys 15:4169–4176.  https://doi.org/10.1039/C2CP43330C CrossRefGoogle Scholar
  18. Major TA, Lo SS, Yu K, Hartland GV (2014) Time-resolved studies of the acoustic vibrational modes of metal and semiconductor nano-objects. J PhyS Chem Lett 5:866–874.  https://doi.org/10.1021/jz4027248 CrossRefGoogle Scholar
  19. O’Brien K, Lanzillotti-Kimura ND, Rho J, Suchowski H, Yin X, Zhang X (2014) Ultrafast acousto-plasmonic control and sensing in complex nanostructures. Nat Commun 5:4042.  https://doi.org/10.1038/ncomms5042 CrossRefGoogle Scholar
  20. Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901.  https://doi.org/10.1016/j.ccr.2005.01.030 CrossRefGoogle Scholar
  21. Petrova H, Pérez-Juste J, Zhang Z, Zhang J, Kosel T, Hartland GV (2006) Crystal structure dependence of the elastic constants of gold nanorods. J Mater Chem 16:3957.  https://doi.org/10.1039/B607364F CrossRefGoogle Scholar
  22. Ruijgrok PV, Zijlstra P, Tchebotareva AL, Orrit M (2012) Damping of acoustic vibrations of single gold nanoparticles optically trapped in water. Nano Lett 12:1063–1069.  https://doi.org/10.1021/nl204311q CrossRefGoogle Scholar
  23. Sauceda HE, Garzón IL (2015) Vibrational properties and specific heat of core–shell Ag–Au icosahedral nanoparticles. Phys Chem Chem Phys 17(42):28054–28059.  https://doi.org/10.1039/C5CP00232J CrossRefGoogle Scholar
  24. Sauceda HE, Salazar F, Pérez LA, Garzón IL (2013) Size and shape dependence of the vibrational spectrum and low-temperature specific heat of Au nanoparticles. J Phys Chem C 117:25160–25168.  https://doi.org/10.1021/jp408976f CrossRefGoogle Scholar
  25. Sheng HW, Kramer MJ, Cadien A, Fujita T, Chen MW (2011) Highly optimized embedded-atom-method potentials for fourteen fcc metals. Phys Rev B 83:134118.  https://doi.org/10.1103/PhysRevB.83.134118 CrossRefGoogle Scholar
  26. Wang ZL, Mohamed MB, Link S, El-Sayed MA (1999) Crystallographic facets and shapes of gold nanorods of different aspect ratios. Surf Sci 440:L809–L814.  https://doi.org/10.1016/S0039-6028(99)00865-1 CrossRefGoogle Scholar
  27. Yang YT, Callegari C, Feng XL, Ekinci KL, Roukes ML (2006) Zeptogram-scale nanomechanical mass sensing. Nano Lett 6:583–586.  https://doi.org/10.1021/nl052134m CrossRefGoogle Scholar
  28. Yu K, Zijlstra P, Sader JE, Xu Q, Orrit M (2013) Damping of acoustic vibrations of immobilized single gold nanorods in different environments. Nano Lett 13:2710–2716.  https://doi.org/10.1021/nl400876w CrossRefGoogle Scholar
  29. Zijlstra P, Tchebotareva AL, Chon JW, Gu M, Orrit M (2008) Acoustic oscillations and elastic moduli of single gold nanorods. Nano Lett 8:3493–3497.  https://doi.org/10.1021/nl802480q CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Faculty of EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations