The synergistic effect of nitrogen-doped titanium dioxide/mercaptobenzoic acid/silver nanocomplexes for surface-enhanced Raman scattering

  • Jun Feng
  • Wenyuan Bao
  • Lijun Li
  • Hao Cheng
  • Wenyi Huang
  • Hongxing Kong
  • Yanqing Li
Research Paper
  • 86 Downloads

Abstract

We synthesized titanium dioxide (TiO2) and nitrogen-doped TiO2 nanoparticles (N-TiO2 NPs) via a sol-hydrothermal method using ammonium chloride (NH4Cl) as the nitrogen (N) source. Furthermore, an N-TiO2/4-mercaptobenzoic acid (4-MBA)/silver (Ag) nanocomplex served as an active substrate for surface-enhanced Raman scattering (SERS) and was prepared by self-assembly. During SERS, the Raman signals of 4-MBA of the N-TiO2/MBA/Ag nanocomplexes exhibited higher intensity and sensitivity than pure TiO2/MBA/Ag, with 1% N doping in N-TiO2, producing the strongest Raman signals. We characterized the N-TiO2 hybrid materials by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible diffuse reflectance spectra. N doping did not influence the phase of the TiO2 crystal. The doped N entered into the crystal lattice of the TiO2, replacing some oxygen (O) to form Ti-O-N or Ti-N-O linkage. The results indicated that an appropriate amount of N doping could enhance the SERS performance of the TiO2 SERS substrate via N substitution doping. These doping forms were beneficial to the molecular charge transfer (CT), and this resulted in improved SERS performance for N-doped TiO2 NPs. We attributed this improvement to the formation of N-doping energy levels that were beneficial to the process of TiO2 to MBA molecule CT. This work not only enriched the nonmetal-doped CT mechanism in SERS but also provided several reference values for practical applications.

Graphical abstract

N-doped TiO2 nanoparticles were synthesized. Whereafter, N-TiO2/MBA/Ag nanocomplexes were prepared and served as a SERS-active substrate. An appropriate amount of N doping can enhance the SERS properties of TiO2 SERS-active substrate by nitrogen substitution doping. The nonmetal doping TiO2-to-molecule CT mechanism and the synergistic effect in N-TiO2/MBA/Ag charge transfer systems have been studied.

Keywords

N-doped TiO2 Nanocomplex Surface-enhanced Raman scattering (SERS) Charge transfer mechanism Semiconductor substrates 

Notes

Acknowledgements

We would like to thank LetPub (www.letpub.com) for providing the linguistic assistance during the preparation of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Bakar SA, Byzynski G, Ribeiro C (2016) Synergistic effect on the photocatalytic activity of N-doped TiO2 nanorods synthesised by novel route with exposed (110) facet. J Alloy Compd 666:38–49.  https://doi.org/10.1016/j.jallcom.2016.01.112 CrossRefGoogle Scholar
  2. Batzill M, Morales EH, Diebold U (2006) Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Phys Rev Lett 96. 026103 (1-3),  https://doi.org/10.1103/PhysRevLett.96.026103
  3. Burda C, Lou Y, Chen X, Samia ACS, Stout J, Gole JL (2003) Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett 3:1049–1051.  https://doi.org/10.1021/nl034332o CrossRefGoogle Scholar
  4. Casadio F, Leona M, Lombardi JR, Duyne RV (2010) Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy. Accounts Chem Res 43:782–791.  https://doi.org/10.1021/ar100019q CrossRefGoogle Scholar
  5. Chung E, Lee J, Yu J, Lee S, Kang JH, Chung Y, Choo J (2014) Use of surface-enhanced Raman scattering to quantify EGFR markers uninhibited by cetuximab antibodies. Biosens Bioelectron 60:358–365.  https://doi.org/10.1016/j.bios.2014.04.041 CrossRefGoogle Scholar
  6. Fan M, Andrade GF, Brolo AG (2011) A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta 693:7–25.  https://doi.org/10.1016/j.aca.2011.03.002 CrossRefGoogle Scholar
  7. Fleischmann M, Hendra PJ, Mcquillan AJ (1974) Raman spectra of pyridine absorbed at a silver electrode. Chem Phys Lett 26:163–166.  https://doi.org/10.1016/0009-2614(74)85388-1 CrossRefGoogle Scholar
  8. Gong M, Jiang X, Du J, Li X, Han X, Yang L, Zhao B (2015) Anatase TiO2 nanoparticles with controllable crystallinity as a substrate for SERS: improved charge-transfer contribution. RSC Adv 5:80269–80275.  https://doi.org/10.1039/C5RA17176H CrossRefGoogle Scholar
  9. Huang W, Cheng H, Feng J, Shi Z, Bai D, Li L (2017a) Synthesis of highly water-dispersible N-doped anatase titania based on low temperature solvent-thermal method. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2017.12.028
  10. Huang Q, Li J, Wei W, Wu Y, Li T (2017b) Synthesis, characterization and application of TiO2/Ag recyclable SERS substrates. RSC Adv 7:26704–26709.  https://doi.org/10.1039/c7ra03112b CrossRefGoogle Scholar
  11. Ji W, Zhao B, Ozaki Y (2016) Semiconductor materials in analytical applications of surface-enhanced Raman scattering. J Raman Spectrosc 47:51–58.  https://doi.org/10.1002/jrs.4854 CrossRefGoogle Scholar
  12. Jiang X, Li X, Jia X, Li G, Wang X, Wang G, Li Z, Yang L, Zhao B (2012) Surface-enhanced Raman scattering from synergistic contribution of metal and semiconductor in TiO2/MBA/Ag(Au) and Ag(Au)/MBA/TiO2 assemblies. J Phys Chem C 116:14650–14655.  https://doi.org/10.1021/jp302139e CrossRefGoogle Scholar
  13. Jiang X, Qin X, Gong M, Li X, Li G, Yang L, Zhao B (2014) Improvement of surface-enhanced Raman scattering properties of TiO2 nanoparticles by metal Ni doping. Chem J Chinese U 35:488–492.  https://doi.org/10.7503/cjcu20130936 Google Scholar
  14. Kandjani AE, Mohammadtaheri M, Thakkar A, Bhargava SK, Bansal V (2014) Zinc oxide/silver nanoarrays as reusable SERS substrates with controllable ‘hot-spots’ for highly reproducible molecular sensing. J Colloid Interf Sci 436:251–257.  https://doi.org/10.1016/j.jcis.2014.09.017 CrossRefGoogle Scholar
  15. Lamberti A, Virga A, Chiadò A, Chiodoni A, Bejtka K, Rivolo P, Giorgis F (2015) Ultrasensitive Ag-coated TiO2 nanotube arrays for flexible SERS-based optofluidic devices. J Mater Chem C 3:6868–6875.  https://doi.org/10.1039/C5TC01154J CrossRefGoogle Scholar
  16. Lee H, Kang M (2014) Synthesis of N-doped TiO2 particles from aquaethylenediaminetitanium(IV) hydroxide complex and their optical properties on dye-sensitized solar cells. J Sol-Gel Sci Technol 69:325–337.  https://doi.org/10.1007/s10971-013-3221-4 CrossRefGoogle Scholar
  17. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395.  https://doi.org/10.1021/j100214a025 CrossRefGoogle Scholar
  18. Li W, Liang R, Hu A, Huang Z, Zhou YN (2014) Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC Adv 4:36959–36966.  https://doi.org/10.1039/C4RA04768K CrossRefGoogle Scholar
  19. Ling Y, Zhuo Y, Huang L, Mao D (2016) Using Ag-embedded TiO2 nanotubes array as recyclable SERS substrate. Appl Surf Sci 388:169–173.  https://doi.org/10.1016/j.apsusc.2016.01.257. CrossRefGoogle Scholar
  20. Livraghi S, Paganini MC, Giamello E, Selloni A, Valentin CD, Pacchioni G (2006) Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J Am Chem Soc 128:15666–15671.  https://doi.org/10.1021/ja064164c CrossRefGoogle Scholar
  21. Lombardi JR, Birke RL (2008) A unified approach to surface-enhanced Raman spectroscopy. J Phys Chem C 112:5605–5617.  https://doi.org/10.1021/jp800167v CrossRefGoogle Scholar
  22. Mao Z, Song W, Xue X, Ji W, Chen L, Lombardi JR, Zhao B (2012) Multiphonon resonant Raman scattering and photoinduced charge-transfer effects at ZnO-molecule interfaces. J Phys Chem C 116:26908–26918.  https://doi.org/10.1021/jp3092573 CrossRefGoogle Scholar
  23. Mao H, Chen Y, Wang J (2015) Raman scattering and luminescence emission of the CdSe/ZnS quantum dots mediated by the surface plasmon. Opt Quant Electron 47:2811–2819.  https://doi.org/10.1007/s11082-015-0169-3 CrossRefGoogle Scholar
  24. Panikkanvalappil SR, Hira SM, Mahmoud MA, El-Sayed MA (2014) Unraveling the biomolecular snapshots of mitosis in healthy and cancer cells using plasmonically-enhanced Raman spectroscopy. J Am Chem Soc 136:15961–15968.  https://doi.org/10.1021/ja506289u CrossRefGoogle Scholar
  25. Rivera-Betancourt OE, Primera-Pedrozo OM, Pacheco-Londoño LC, Hernández-Rivera SP (2010) SERS and density functional theory study of ο-dinitrobenzene on Cu nanoparticles. IEEE Sensors J 10:699–706.  https://doi.org/10.1109/JSEN.2009.2038626 CrossRefGoogle Scholar
  26. Šileikaitė A, Prosyčevas I, Puišo J, Juraitis A, Guobiene A (2006) Analysis of silver nanoparticles produced by chemical reduction of silver salt solution. Mater Sci 12:287–291Google Scholar
  27. Song W, Wang Y, Hu H, Zhao B (2007a) Fabrication of surface-enhanced Raman scattering-active ZnO/Ag composite microspheres. J Raman Spectrosc 38:1320–1325.  https://doi.org/10.1002/jrs.1769 CrossRefGoogle Scholar
  28. Song W, Wang Y, Zhao B (2007b) Surface-enhanced raman scattering of 4-mercaptopyridine on the surface of TiO2 nanofibers coated with agnanoparticles. J Phys Chem C 111:12786–12791.  https://doi.org/10.1021/jp073728b CrossRefGoogle Scholar
  29. Tarakeshwar P, Finkelstein-Shapiro D, Hurst SJ, Rajh T, Mujica V (2011) Surface-enhanced Raman scattering on semiconducting oxide nanoparticles: oxide nature, size, solvent, and pH effects. J Phys Chem C 115:8994–9004.  https://doi.org/10.1021/jp202590e CrossRefGoogle Scholar
  30. Tian ZQ, Ren B, Wu DY (2002) Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J Phys Chem B 106:9463–9483.  https://doi.org/10.1021/jp0257449 CrossRefGoogle Scholar
  31. Wang Y, Sun Z, Hu H, Jing S, Zhao B, Xu W, Zhao C, Lombardi JR (2007) Raman scattering study of molecules adsorbed on ZnS nanocrystals. J Raman Spectrosc 38:34–38.  https://doi.org/10.1002/jrs.1570 CrossRefGoogle Scholar
  32. Wang J, Tafen DN, Lewis JP, Hong Z, Manivannan A, Zhi M, Li M, Wu N (2009) Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J Am Chem Soc 131:12290–12297.  https://doi.org/10.1021/ja903781h CrossRefGoogle Scholar
  33. Xie W, Herrmann C, Kömpe K, Haase M, Schlücker S (2011) Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions. J Am Chem Soc 133:19302–19305.  https://doi.org/10.1021/ja208298q CrossRefGoogle Scholar
  34. Xie J, Xie H, Su B, Cheng Y, Du X, Zeng H, Wang M, Wang W, Wang H, Fu Z (2016) Mussel-directed synthesis of nitrogen-doped anatase TiO2. Angew Chem Int Ed 55:3031–3035.  https://doi.org/10.1002/anie.201509906 CrossRefGoogle Scholar
  35. Xu L, Yu Y, Xing X, Wu X, Li S (2008) Enhancement of ferromagnetism upon thermal annealing in plasma assisted MBE grown mixed-phase Mn-doped insulating TiO2 thin films. Appl Phys A Mater Sci Process 92:361–365.  https://doi.org/10.1007/s00339-008-4530-2 CrossRefGoogle Scholar
  36. Xue X, Ji W, Mao Z, Li Z, Ruan W, Zhao B, Lombardib JR (2012) Effects of Mn doping on surface enhanced Raman scattering properties of TiO2 nanoparticles. Spectrochim Acta A 95:213–217.  https://doi.org/10.1016/j.saa.2012.04.101 CrossRefGoogle Scholar
  37. Yang L, Jiang X, Ruan W, Zhao B, Xu W, Lombardi JR (2008) Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: charge-transfer contribution. J Phys Chem C 112:20095–20098.  https://doi.org/10.1021/jp8074145 CrossRefGoogle Scholar
  38. Yang L, Zhang Y, Ruan W, Zhao B, Xua W, Lombardi JR (2010) Improved surface-enhanced Raman scattering properties of TiO2 nanoparticles by Zn dopant. J Raman Spectrosc 41:721–726.  https://doi.org/10.1002/jrs.2511 Google Scholar
  39. Yang L, Qin X, Gong M, Jiang X, Yang M, Li X, Li G (2014) Improving surface-enhanced Raman scattering properties of TiO2 nanoparticles by metal Co doping. Spectrochim Acta A 123:224–229.  https://doi.org/10.1016/j.saa.2013.12.087 CrossRefGoogle Scholar
  40. Yang L, Gong M, Jiang X, Yin D, Qin X, Zhao B, Ruan W (2015a) Investigation on SERS of different phase structure TiO2 nanoparticles. J Raman Spectrosc 46:287–292.  https://doi.org/10.1002/jrs.4645 CrossRefGoogle Scholar
  41. Yang L, Qin X, Jiang X, Gong M, Yin D, Zhang Y, Zhao B (2015b) SERS investigation of ciprofloxacin drug molecules on TiO2 nanoparticles. Phys Chem Chem Phys 17:17809–17815.  https://doi.org/10.1039/c5cp02666k CrossRefGoogle Scholar
  42. Zhang XR, Lin YH, Zhang JF, He DQ, Wang DJ (2010) Photoinduced charge carrier properties and photocatalytic activity of N-doped TiO2 nanocatalysts. Acta Phys-Chim Sin 26:2733–2738.  https://doi.org/10.3866/pku.whxb20101007 Google Scholar
  43. Zhang X, Yu Z, Ji W, Sui H, Cong Q, Wang X, Zhao B (2015) Charge-transfer effect on surface-enhanced Raman scattering (SERS) in an ordered Ag NPs/4-mercaptobenzoic acid/TiO2 system. J Phys Chem C 119:22439–22444.  https://doi.org/10.1021/acs.jpcc.5b06001 CrossRefGoogle Scholar
  44. Zhang X, Sui H, Wang X, Su H, Cheng W, Wang X, Zhao B (2016) Charge transfer process at the Ag/MPH/TiO2 interface by SERS: alignment of the Fermi level. Phys Chem Chem Phys 18:30053–30060.  https://doi.org/10.1039/c6cp04370d CrossRefGoogle Scholar
  45. Zhou Y, Liu Y, Liu P, Zhang W, Xing M, Zhang J (2015) A facile approach to further improve the substitution of nitrogen into reduced TiO2−x with an enhanced photocatalytic activity. Appl Catal B-Environ 170–171:66–73.  https://doi.org/10.1016/j.apcatb.2015.01.036 CrossRefGoogle Scholar
  46. Zhu Z, Meng H, Liu W, Liu X, Gong J, Qiu X, Jiang L, Wang D, Tang Z (2011) Superstructures and SERS properties of gold nanocrystals with different shapes. Angew Chem Int Ed 50:1593–1596.  https://doi.org/10.1002/anie.201005493 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Jun Feng
    • 1
    • 2
  • Wenyuan Bao
    • 2
    • 3
  • Lijun Li
    • 2
    • 3
  • Hao Cheng
    • 2
    • 3
  • Wenyi Huang
    • 2
    • 3
  • Hongxing Kong
    • 2
    • 3
  • Yanqing Li
    • 2
    • 3
  1. 1.Department of Pharmacy, School of MedicineGuangxi University of Science and TechnologyLiuzhouPeople’s Republic of China
  2. 2.Guangxi Key Laboratory of Green Processing of Sugar ResourcesGuangxi University of Science and TechnologyLiuzhouPeople’s Republic of China
  3. 3.College of Biological and Chemical EngineeringGuangxi University of Science and TechnologyLiuzhouPeople’s Republic of China

Personalised recommendations