A novel one-pot room-temperature synthesis route to produce very small photoluminescent silicon nanocrystals

  • Oscar A. Douglas-Gallardo
  • Maxi A. Burgos-Paci
  • Rubén Mendoza-Cruz
  • Karl G. Putnam
  • M. Josefina Arellano-Jiménez
  • Miguel José-Yacamán
  • Marcelo M. Mariscal
  • Vicente A. Macagno
  • Cristián G. Sánchez
  • Manuel A. Pérez
Research Paper
  • 138 Downloads

Abstract

A novel strategy to synthesize photoluminescent silicon nanocrystals (SiNCs) from a reaction between tetraethylorthosilicate (TEOS) and trimethyl-hexadecyl-ammonium borohydride (CTABH4) in organic solvent is presented. The formation reaction occurs spontaneously at room temperature in homogeneous phase. The produced silicon nanocrystals are characterized by using their photoluminescent properties and via HRTEM. In addition, theoretical calculations of the optical absorption spectrum of silicon quantum dots in vacuum with different sizes and surface moieties were performed in order to compare with the experimental findings. The new chemical reaction is simple and can be implemented to produce silicon nanocrystal with regular laboratory materials by performing easy and safe procedures.

Graphical abstract

Keywords

Silicon quantum dots Photoluminescent silicon nanocrystals Synthesis Colloids 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2018_4174_MOESM1_ESM.doc (3.6 mb)
ESM 1 (DOC 3670 kb)

References

  1. Arul Dhas N, Raj CP, Gedanken A (1998) Preparation of luminescent silicon nanoparticles: a novel sonochemical approach. Chem Mater 10(11):3278–3281.  https://doi.org/10.1021/cm980408j CrossRefGoogle Scholar
  2. Cheng X, Lowe SB, Reece PJ, Gooding JJ (2014) Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem Soc Rev 43(8):2680–2700.  https://doi.org/10.1039/C3CS60353A CrossRefGoogle Scholar
  3. Chopra S, Rai B (2015) DFT/TDDFT study of electronic and optical properties of surface-passivated silicon nanocrystals, Sin (n = 20, 24, 26 and 28). J Nanostruct Chem 5(2):195–203.  https://doi.org/10.1007/s40097-015-0150-5 CrossRefGoogle Scholar
  4. Dasog M, De Los Reyes GB, Titova LV, Hegmann FA, Veinot JGC (2014) Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. ACS Nano 8(9):9636–9648.  https://doi.org/10.1021/nn504109a CrossRefGoogle Scholar
  5. Dasog M, Yang Z, Regli S, Atkins TM, Faramus A, Singh MP, Muthuswamy E, Kauzlarich SM, Tilley RD, Veinot JGC (2013) Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals. ACS Nano 7(3):2676–2685.  https://doi.org/10.1021/nn4000644 CrossRefGoogle Scholar
  6. Debenedetti WJI, Chiu SK, Radlinger CM, Ellison RJ, Manhat BA, Zhang JZ, Shi J, Goforth AM (2015) Conversion from red to blue photoluminescence in alcohol dispersions of alkyl-capped silicon nanoparticles: insight into the origins of visible photoluminescence in colloidal nanocrystalline silicon. J Phys Chem C 119(17):9595–9608.  https://doi.org/10.1021/acs.jpcc.5b01137 CrossRefGoogle Scholar
  7. De los Reyes GB, Dasog M, Na M, Titova LV, Veinot JGC, Hegmann FA (2015) Charge transfer state emission dynamics in blue-emitting functionalized silicon nanocrystals. Phys Chem Chem Physics 17(44):30125–30133.  https://doi.org/10.1039/C5CP04819B CrossRefGoogle Scholar
  8. Douglas-Gallardo OA, Gomez CG, Macchione MA, Cometto FP, Coronado EA, Macagno VA, Pérez MA (2015) Morphological evolution of noble metal nanoparticles in chloroform: mechanism of switching on/off by protic species. RSC Adv 5(122):100488–100497 http://doi.org/C5RA17529A CrossRefGoogle Scholar
  9. Hessel CM, Reid D, Panthani MG, Rasch MR, Goodfellow BW, Wei J, Fujii H, Akhavan V, Korgel BA (2012) Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chem Mater 24(2):393–401.  https://doi.org/10.1021/cm2032866 CrossRefGoogle Scholar
  10. Holmes JD, Ziegler KJ, Doty RC, Pell LE, Johnston KP, Korgel BA (2001) Highly luminescent silicon nanocrystals with discrete optical transitions. J Am Chem Soc 123(16):3743–3748.  https://doi.org/10.1021/ja002956f CrossRefGoogle Scholar
  11. Kanemitsu Y, Futagi T, Matsumoto T, Mimura H (1994) Origin of the blue and red photoluminescence from oxidized porous silicon. Phys Rev B 49(20):14732–14735.  https://doi.org/10.1103/PhysRevB.49.14732 CrossRefGoogle Scholar
  12. Li QS, Zhang RQ, Lee ST, Niehaus TA, Frauenheim T (2008) Optimal surface functionalization of silicon quantum dots. J Chem Phys 128(24):244714.  https://doi.org/10.1063/1.2940735 CrossRefGoogle Scholar
  13. Liu J, Erogbogbo F, Yong KT, Ye L, Liu J, Hu R, Chen H, Hu Y, Yang Y, Yang J, Roy I, Karker NA, Swihart MT, Prasad PN (2013) Assessing clinical prospects of silicon quantum dots: studies in mice and monkeys. ACS Nano 7(8):7303–7310.  https://doi.org/10.1021/nn4029234 CrossRefGoogle Scholar
  14. Liu X, Gao Y, Jin R, Luo H, Peng P, Liu Y (2014) Scalable synthesis of si nanostructures by low-temperature magnesiothermic reduction of silica for application in lithium ion batteries. Nano Energy 4:31–38.  https://doi.org/10.1016/j.nanoen.2013.12.002 CrossRefGoogle Scholar
  15. Liu XH, Liu Y, Kushima A, Zhang S, Zhu T, Li J, Huang JY (2012) In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv Energy Mater 2(7):722–741.  https://doi.org/10.1002/aenm.201200024 CrossRefGoogle Scholar
  16. Ma Y, Chen X, Pi X, Yang D (2011) Theoretical study of chlorine for silicon nanocrystals. J Phys Chem C 115(26):12822–12825.  https://doi.org/10.1021/jp203064m CrossRefGoogle Scholar
  17. Martínez A, Alonso JC, Sansores LE, Salcedo R (2010) Electronic structure of silicon nanocrystals passivated with nitrogen and chlorine. J Phys Chem C 114(29):12427–12431.  https://doi.org/10.1021/jp102017d CrossRefGoogle Scholar
  18. Mastronardi ML, Maier-Flaig F, Faulkner D, Henderson EJ, Kübel C, Lemmer U, Ozin GA (2012) Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals. Nano Lett 12(1):337–342.  https://doi.org/10.1021/nl2036194 CrossRefGoogle Scholar
  19. Pérez MA (2007) In Recent advances in Nanoscience. Mariscal MM, Dassie SA (ed), Kerala: Research Signpost.Google Scholar
  20. Pol VG, Pol SV, Gofer Y, Calderon-Moreno J, Gedanken A (2004) Thermal decomposition of tetraethylorthosilicate (TEOS) produces silicon coated carbon spheres. J Mater Chem 14(6):966–969.  https://doi.org/10.1039/B313343E CrossRefGoogle Scholar
  21. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775.  https://doi.org/10.1038/nmeth.1248 CrossRefGoogle Scholar
  22. Rodriguez A, Arenas J, Alonso JC (2012) Photoluminescence mechanisms in silicon quantum dots embedded in nanometric chlorinated-silicon nitride films. J Lumin 132(9):2385–2389.  https://doi.org/10.1016/j.jlumin.2012.04.007 CrossRefGoogle Scholar
  23. Titov LV, Gavrilova LA, Eremin ER, Mishchenchuk SS, Rosolovskii VY (1971) Tetrabutylammonium borohydride and its complex with aluminum borohydride. Russ Chem Bull 20(6):1266–1268.  https://doi.org/10.1007/BF0085540 CrossRefGoogle Scholar
  24. Warner JH, Hoshino A, Yamamoto K, Tilley RD (2005) Water-soluble photoluminescent silicon quantum dots. Angew Chemie Int Ed 44(29):4550–4554.  https://doi.org/10.1002/anie.200501256 CrossRefGoogle Scholar
  25. Wilcoxon J, Samara G, Provencio P (1999) Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Phys Rev B 60(4):2704–2714.  https://doi.org/10.1103/PhysRevB.60.2704 CrossRefGoogle Scholar
  26. Wilson HF, McKenzie-Sell L, Barnard AS (2014) Shape dependence of the band gaps in luminescent silicon quantum dots. J Mater Chem C 2(44):9451–9456.  https://doi.org/10.1039/C4TC01312C CrossRefGoogle Scholar
  27. Zhang RQ, Sarkar AD, Niehaus TA, Frauenheim T (2012) Excited state properties of Si quantum dots. Phys Status Solidi B 111(6):401–412.  https://doi.org/10.1002/pssb.201100719 CrossRefGoogle Scholar
  28. Zhou Z, Brus L, Friesner R (2003) Electronic structure and luminescence of 1.1- and 1.4-nm silicon nanocrystals: oxide shell versus hydrogen passivation. Nano Lett 3(2):163–167.  https://doi.org/10.1021/nl025890q CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Oscar A. Douglas-Gallardo
    • 1
    • 2
  • Maxi A. Burgos-Paci
    • 1
  • Rubén Mendoza-Cruz
    • 3
  • Karl G. Putnam
    • 3
  • M. Josefina Arellano-Jiménez
    • 3
  • Miguel José-Yacamán
    • 3
  • Marcelo M. Mariscal
    • 2
  • Vicente A. Macagno
    • 1
  • Cristián G. Sánchez
    • 2
  • Manuel A. Pérez
    • 1
  1. 1.Departamento de Fisicoquímica, Facultad de Ciencias Químicas, INFIQC-CONICETUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Departamento de Química teórica y Computacional, Facultad de Ciencias Químicas, INFIQC-CONICETUniversidad Nacional de CórdobaCórdobaArgentina
  3. 3.Department of Physics and AstronomyUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations