Skip to main content
Log in

Room-temperature synthesis of pure perovskite-related Cs4PbBr6 nanocrystals and their ligand-mediated evolution into highly luminescent CsPbBr3 nanosheets

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Currently, all-inorganic cesium lead-halide perovskite nanocrystals have attracted enormous attentions owing to their excellent optical performances. While great efforts have been devoted to CsPbBr3 nanocrystals, the perovskite-related Cs4PbBr6 nanocrystals, which were newly reported, still remained poorly understood. Here, we reported a novel room-temperature reaction strategy to synthesize pure perovskite-related Cs4PbBr6 nanocrystals. Size of the products could be adjusted through altering the amount of ligands, simply. A mixture of two good solvents with different polarity was innovatively used as precursor solvent, being one key to the high-yield Cs4PbBr6 nanocrystals synthesis. Other two keys were Cs+ precursor concentration and surface ligands. Ingenious experiments were designed to reveal the underlying reaction mechanism. No excitonic emission was observed from the prepared Cs4PbBr6 nanocrystals in our work. We considered the green emission which was observed in other reports originated from the avoidless transformation of Cs4PbBr6 into CsPbBr3 nanocrystals. Indeed, the new-prepared Cs4PbBr6 nanocrystals could transform into CsPbBr3 nanosheets with surface ligands mediated. The new-transformed two-dimensional CsPbBr3 nanosheets could evolve into large-size nanosheets. The influences of surface ligand density on the fluorescent intensity and stability of transformed CsPbBr3 nanosheets were also explained. Notably, the photoluminescence quantum yield of the as-transformed CsPbBr3 nanosheets could reach as high as 61.6% in the form of thin film. The fast large-scale synthesis of Cs4PbBr6 nanocrystals and their ligand-mediated transformation into high-fluorescent CsPbBr3 nanosheets will be beneficial to the future optoelectronic applications. Our work provides new approaches to understand the structural evolution and light-emitting principle of perovskite nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abhishek Swarnkar ARM, Sanehira EM, Chernomordik BD, Moore DT, Christians JA, Chakrabarti T, Luther JM (2016) Quantum dot-induced phase stabilization of a-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354:92–95

    Article  Google Scholar 

  • Akkerman QA et al (2016) Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J Am Chem Soc 138:1010–1016. doi:10.1021/jacs.5b12124

    Article  Google Scholar 

  • Akkerman QA et al (2017) Nearly monodisperse insulator Cs4PbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano Lett 17:1924–1930. doi:10.1021/acs.nanolett.6b05262

    Article  Google Scholar 

  • Bekenstein Y, Koscher BA, Eaton SW, Yang P, Alivisatos AP (2015) Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J Am Chem Soc 137:16008–16011. doi:10.1021/jacs.5b11199

    Article  Google Scholar 

  • Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Gratzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319. doi:10.1038/nature12340

    Article  Google Scholar 

  • Chen D, Wan Z, Chen X, Yuan Y, Zhong J (2016) Large-scale room-temperature synthesis and optical properties of perovskite-related Cs4PbBr6 fluorophores. J Mater Chem C 4:10646–10653. doi:10.1039/c6tc04036e

    Article  Google Scholar 

  • Dastidar S et al (2016) High chloride doping levels stabilize the perovskite phase of cesium lead iodide. Nano Lett. doi:10.1021/acs.nanolett.6b00635

  • De Roo J et al (2016) Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10:2071–2081. doi:10.1021/acsnano.5b06295

    Article  Google Scholar 

  • de Weerd C, Gomez L, Zhang H, Buma WJ, Nedelcu G, Kovalenko MV, Gregorkiewicz T (2016) Energy transfer between inorganic perovskite nanocrystals. J Phys Chem C 120:13310–13315. doi:10.1021/acs.jpcc.6b04768

    Article  Google Scholar 

  • Deschler F et al (2014) High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J Phys Chem Lett 5:1421–1426. doi:10.1021/jz5005285

    Article  Google Scholar 

  • Huang H, Chen B, Wang Z, Hung TF, Susha AS, Zhong H, Rogach AL (2016) Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chem Sci 7:5699–5703. doi:10.1039/c6sc01758d

    Article  Google Scholar 

  • Huang K, Li D, Yang L, Liu S, Yang F (2017) Solution-processed approach to highly luminescent trigonal Cs 4 PbBr 6 nanodisks and their underlying shape evolution. J Alloys Compd 710:244–252. doi:10.1016/j.jallcom.2016.12.201

    Article  Google Scholar 

  • Ip AH et al (2012) Hybrid passivated colloidal quantum dot solids. Nat Nanotechnol 7:577–582. doi:10.1038/nnano.2012.127

    Article  Google Scholar 

  • Kim HS et al (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591. doi:10.1038/srep00591

    Article  Google Scholar 

  • Koolyk M, Amgar D, Aharon S, Etgar L (2016) Kinetics of cesium lead halide perovskite nanoparticle growth; focusing and de-focusing of size distribution. Nano 8:6403–6409. doi:10.1039/c5nr09127f

    Google Scholar 

  • Lee K-H, Lee JH, Kang H-D, Park B, Kwon Y, Ko H, Lee C, Lee J, Yang H (2014) Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots. ACS Nano 8:4893

    Article  Google Scholar 

  • Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H (2016a) CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Funct Mater. doi:10.1002/adfm.201600109

  • Li J et al. (2016b) 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv Mater 29. doi:10.1002/adma.201603885

  • Li X et al. (2017) All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small 13. doi:10.1002/smll.201603996

  • Liu IS et al (2008) Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands. J Mater Chem 18:675. doi:10.1039/b715253a

    Article  Google Scholar 

  • Lv L et al (2016) Generalized colloidal synthesis of high-quality, two-dimensional cesium lead halide perovskite nanosheets and their applications in photodetectors. Nanoscale 8:13589–13596. doi:10.1039/c6nr03428d

    Article  Google Scholar 

  • Møller CK (1958) Crystal structure and photoconductivity of cæsium plumbohalides. Nature 182:1436. doi:10.1038/1821436a0

    Article  Google Scholar 

  • Nenon DP et al (2016) Structural and chemical evolution of methylammonium lead halide perovskites during thermal processing from solution. Energy Environ Sci 9:2072–2082. doi:10.1039/c6ee01047d

    Article  Google Scholar 

  • Pan A et al (2016) Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors. ACS Nano 10:7943–7954. doi:10.1021/acsnano.6b03863

    Article  Google Scholar 

  • Protesescu L et al (2015) Nanocrystals of cesium lead halide perovskites (CsPbX(3), X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15:3692–3696. doi:10.1021/nl5048779

    Article  Google Scholar 

  • Quan LN et al (2016) Ligand-stabilized reduced-dimensionality perovskites. J Am Chem Soc 138:2649–2655. doi:10.1021/jacs.5b11740

    Article  Google Scholar 

  • Saidaminov MI et al (2016) Pure Cs4PbBr6: highly luminescent zero-dimensional perovskite solids. ACS Energy Lett 1:840–845. doi:10.1021/acsenergylett.6b00396

    Article  Google Scholar 

  • Song J, Li J, Li X, Xu L, Dong Y, Zeng H (2015) Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater 27:7162–7167. doi:10.1002/adma.201502567

    Article  Google Scholar 

  • Stoumpos CC et al (2013) Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst Growth Des 13:2722–2727. doi:10.1021/cg400645t

    Article  Google Scholar 

  • Swarnkar A, Chulliyil R, Ravi VK, Irfanullah M, Chowdhury A, Nag A (2015) Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots. Angew Chem 54:15424–15428. doi:10.1002/anie.201508276

    Article  Google Scholar 

  • Zhang Y et al (2017) Zero-dimensional Cs4PbBr6 perovskite nanocrystals. J Phys Chem Lett 8:961–965. doi:10.1021/acs.jpclett.7b00105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmei Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Li, D., Wang, C. et al. Room-temperature synthesis of pure perovskite-related Cs4PbBr6 nanocrystals and their ligand-mediated evolution into highly luminescent CsPbBr3 nanosheets. J Nanopart Res 19, 258 (2017). https://doi.org/10.1007/s11051-017-3959-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3959-7

Keywords

Navigation