Advertisement

Patterns from dried water-butanol binary-based nanofluid drops

  • Maryam ParsaEmail author
  • Riadh Boubaker
  • Souad Harmand
  • Khellil Sefiane
  • Maxence Bigerelle
  • Raphaël Deltombe
Research Paper

Abstract

In this work, the behavior of evaporating binary-based nanofluid sessile droplets deposited on a smooth silicon substrate at different temperatures is explored. The formation of deposition patterns during the evaporation is studied by tracking particle clusters using optical microscopy. Similarly to evaporation of pure water-based nanofluid droplets, three distinctive deposition patterns are left behind the complete evaporation: a relatively uniform coverage pattern (on a nonheated surface); a “dual-ring” pattern at higher temperature, i.e., 81 °C; and a “stick-slip” pattern at 99 °C. Infrared thermography technique was employed to visualize the evolution of thermal patterns on the surface of the drying droplets. Thermal imaging shows that the evaporation of binary mixture droplets can be classified into three regimes. In the first regime, multiple convection vortices can be observed at the droplet interface, corresponding to the chaotic motion of nanoparticles captured by video microscopy. This flow regime is believed to be driven by surface tension gradients arising from local concentration gradients. As evaporation time proceeds, the number of convection vortices decreases in regime I, and a few numbers of those are left in the second regime. The flow slows down and a rapid transition (the second regime) occurs; this is followed by the last regime. At the two highest temperatures of 81 and 99 °C, the end of the transition regime is associated with the existence of two distinctive counter-rotating vortices. For the third regime, the results from both infrared thermography and video microscopy show identical behavior to those of water-based nanofluid droplets at the same substrate temperatures. This reveals that most of the more volatile component (not all) has evaporated after the first two regimes; hence, the solutal Marangoni driven by local concentration gradients is significantly weakened and has no further role in the flow structure in the last regime. Instead, the thermocapillary effect and continuity are the underlying reasons for the internal flow structure of the evaporating droplets during the last regime.

Graphical abstract

Keywords

Sessile droplet evaporation Nanofluid Binary mixture Drying patterns Marangoni flow Droplet evaporation 

Notes

Acknowledgements

The authors are grateful for the support from the VEDECOM Institute.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

(AVI 82161 kb)

(AVI 31911 kb)

(AVI 1334 kb)

(AVI 9083 kb)

(AVI 5427 kb)

(AVI 3396 kb)

Video S7

(AVI 3279 kb)

Video S8

(AVI 5112 kb)

References

  1. Abe Y, Iwasaki A (2002) Microgravity experiments on dual vapor bubbles of self-wetting fluid. In: AIP Conference Proceedings. AIP, pp 189–196Google Scholar
  2. Abe Y, Tanaka K, Nakagawa M et al (2006) Flexible wickless heat pipes radiator with self-rewetting fluids. In: 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. American Institute of Aeronautics and Astronautics, Reston, pp 2006–3105Google Scholar
  3. Askounis A, Sefiane K, Koutsos V, Shanahan MER (2014) The effect of evaporation kinetics on nanoparticle structuring within contact line deposits of volatile drops. Colloids Surf A Physicochem Eng Asp 441:855–866. doi: 10.1016/j.colsurfa.2012.10.017 CrossRefGoogle Scholar
  4. Barber J, Brutin D, Tadrist L (2011) A review on boiling heat transfer enhancement with nanofluids. Nanoscale Res Lett 6:1–16. doi: 10.1186/1556-276X-6-280 CrossRefGoogle Scholar
  5. Bennacer R, Sefiane K (2014) Vortices, dissipation and flow transition in volatile binary drops. J Fluid Mech 749:649–665. doi: 10.1017/jfm.2014.220 CrossRefGoogle Scholar
  6. Chen P, Toubal M, Carlier J et al (2016) Evaporation of binary sessile drops: infrared and acoustic methods to track alcohol concentration at the interface and on the surface. Langmuir 32:9836–9845. doi: 10.1021/acs.langmuir.6b02564 CrossRefGoogle Scholar
  7. Cheng AKH, Soolaman DM, Yu H-Z (2006) Evaporation of microdroplets of ethanol-water mixtures on gold surfaces modified with self-assembled monolayers. J Phys Chem B 110:11267–11271. doi: 10.1021/jp0572885 CrossRefGoogle Scholar
  8. Christy JRE, Hamamoto Y, Sefiane K (2011) Flow transition within an evaporating binary mixture sessile drop. Phys Rev Lett. doi: 10.1103/PhysRevLett.106.205701
  9. Christy JRE, Sefiane K, Munro E (2010) A study of the velocity field during evaporation of sessile water and water/ethanol drops. J Bionic Eng 7:321–328. doi: 10.1016/S1672-6529(10)60263-6 CrossRefGoogle Scholar
  10. Crivoi A, Duan F (2013) Effect of surfactant on the drying patterns of graphite nanofluid droplets. J Phys Chem B 117:5932–5938. doi: 10.1021/jp401751z CrossRefGoogle Scholar
  11. De Dier R, Sempels W, Hofkens J, Vermant J (2014) Thermocapillary fingering in surfactant-laden water droplets. Langmuir 30:13338–13334. doi: 10.1021/la503655j CrossRefGoogle Scholar
  12. Deegan R, Bakajin O, Dupont T et al (2000) Contact line deposits in an evaporating drop. Phys Rev E 62:756–765. doi: 10.1103/PhysRevE.62.756 CrossRefGoogle Scholar
  13. Deegan RD (2000) Pattern formation in drying drops. Phys Rev E 61:475–485. doi: 10.1103/PhysRevE.61.475 CrossRefGoogle Scholar
  14. Deegan RD, Bakajin O, Dupont TF et al (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829. doi: 10.1038/39827 CrossRefGoogle Scholar
  15. Di Paola R, Savino R, Gattia DM et al (2011) Self-rewetting carbon nanofluid as working fluid for space and terrestrial heat pipes. J Nanopart Res 13:6207–6216. doi: 10.1007/s11051-011-0601-y CrossRefGoogle Scholar
  16. Erbil HY (2012) Evaporation of pure liquid sessile and spherical suspended drops: a review. Adv Colloid Interf Sci 170:67–86. doi: 10.1016/j.cis.2011.12.006 CrossRefGoogle Scholar
  17. Faeth GM (1983) Evaporation and combustion of sprays. Prog Energy Combust Sci 9:1–76. doi: 10.1016/0360-1285(83)90005-9 CrossRefGoogle Scholar
  18. Fischer BJ (2002) Particle convection in an evaporating colloidal droplet. Langmuir 18:60–67. doi: 10.1021/la015518a CrossRefGoogle Scholar
  19. Hu H, Larson RG (2006) Marangoni effect reverses coffee-ring depositions. J Phys Chem B 110:7090–7094. doi: 10.1021/jp0609232 CrossRefGoogle Scholar
  20. Hu H, Larson RG (2005) Analysis of the microfluid flow in an evaporating sessile droplet. Langmuir 21:3963–3971. doi: 10.1021/la047528s CrossRefGoogle Scholar
  21. Hu Y-C, Zhou Q, Ye H-M et al (2013) Peculiar surface profile of poly(ethylene oxide) film with ring-like nucleation distribution induced by Marangoni flow effect. Colloids Surf A Physicochem Eng Asp 428:39–46. doi: 10.1016/j.colsurfa.2013.03.035 CrossRefGoogle Scholar
  22. Kim H, Boulogne F, Um E et al (2016) Controlled uniform coating from the interplay of Marangoni flows and surface-adsorbed macromolecules. Phys Rev Lett 116:124501. doi: 10.1103/PhysRevLett.116.124501 CrossRefGoogle Scholar
  23. Kovalchuk NM, Trybala A, Starov VM (2014) Evaporation of sessile droplets. Curr Opin Colloid Interface Sci 19:336–342. doi: 10.1016/j.cocis.2014.07.005 CrossRefGoogle Scholar
  24. Limbourg-Fontaine MC, Petre G, Legros JC (1986) Thermocapillary movements under microgravity at a minimum of surface tension. Naturwissenschaften 73:360–362. doi: 10.1007/BF00367265 CrossRefGoogle Scholar
  25. Liu C, Bonaccurso E, Butt H-J (2008) Evaporation of sessile water/ethanol drops in a controlled environment. Phys Chem Chem Phys 10:7150–7157. doi: 10.1039/b808258h CrossRefGoogle Scholar
  26. Maillard M, Motte L, Pileni MP (2001) Rings and hexagons made of nanocrystals. Adv Mater 13:200–204. doi: 10.1002/1521-4095(200102)13:3<200::AID-ADMA200>3.0.CO;2-P CrossRefGoogle Scholar
  27. Orejon D, Sefiane K, Shanahan MER (2011) Stick–slip of evaporating droplets: substrate hydrophobicity and nanoparticle concentration. Langmuir 27:12834–12843. doi: 10.1021/la2026736 CrossRefGoogle Scholar
  28. Park J, Moon J (2006) Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir 22:3506–3513. doi: 10.1021/la053450j CrossRefGoogle Scholar
  29. Parsa M, Harmand S, Sefiane K et al (2015) Effect of substrate temperature on pattern formation of nanoparticles from volatile drops. Langmuir 31:3354–3367. doi: 10.1021/acs.langmuir.5b00362 CrossRefGoogle Scholar
  30. Petre G, Azouni MA (1984) Experimental evidence for the minimum of surface tension with temperature at aqueous alcohol solution/air interfaces. J Colloid Interface Sci 98:261–263. doi: 10.1016/0021-9797(84)90503-4 CrossRefGoogle Scholar
  31. Rowan SM, Newton MI, Driewer FW, McHale G (2000) Evaporation of microdroplets of azeotropic liquids. J Phys Chem B 104:8217–8220. doi: 10.1021/jp000938e CrossRefGoogle Scholar
  32. Sato M, Abe Y, Urita Y, et al (2009) Thermal performance of self-rewetting fluid heat pipe containing dilute solutions of polymer-capped silver nanoparticles synthesized by microwave-polyol process. In: Proceedings of the 6th Interdisciplinary Transport Phenomena VI Fluid Thermal Biological Materials and Space Sciences. Volterra, Italy,Google Scholar
  33. Savino R, Cecere A, Di Paola R (2009) Surface tension-driven flow in wickless heat pipes with self-rewetting fluids. Int J Heat Fluid Flow 30:380–388. doi: 10.1016/j.ijheatfluidflow.2009.01.009 CrossRefGoogle Scholar
  34. Savino R, Cecere A, Van Vaerenbergh S et al (2013) Some experimental progresses in the study of self-rewetting fluids for the SELENE experiment to be carried in the thermal platform 1 hardware. Acta Astronaut 89:179–188. doi: 10.1016/j.actaastro.2013.03.020 CrossRefGoogle Scholar
  35. Savino R, Di Paola R, Cecere A, Fortezza R (2010) Self-rewetting heat transfer fluids and nanobrines for space heat pipes. Acta Astronaut 67:1030–1037. doi: 10.1016/j.actaastro.2010.06.034 CrossRefGoogle Scholar
  36. Sefiane K, David S, Shanahan MER (2008) Wetting and evaporation of binary mixture drops. J Phys Chem B 112:11317–11323. doi: 10.1021/jp8030418 CrossRefGoogle Scholar
  37. Sefiane K, Tadrist L, Douglas M (2003) Experimental study of evaporating water–ethanol mixture sessile drop: influence of concentration. Int J Heat Mass Transf 46:4527–4534. doi: 10.1016/S0017-9310(03)00267-9 CrossRefGoogle Scholar
  38. Still T, Yunker PJ, Yodh AG (2012) Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir 28:4984–4988. doi: 10.1021/la204928m CrossRefGoogle Scholar
  39. Su X, Zhang M, Han W, Guo X (2015) Enhancement of heat transport in oscillating heat pipe with ternary fluid. Int J Heat Mass Transf 87:258–264. doi: 10.1016/j.ijheatmasstransfer.2015.04.002 CrossRefGoogle Scholar
  40. Su X, Zhang M, Han W, Guo X (2016) Experimental study on the heat transfer performance of an oscillating heat pipe with self-rewetting nanofluid. Int J Heat Mass Transf 100:378–385. doi: 10.1016/j.ijheatmasstransfer.2016.04.094 CrossRefGoogle Scholar
  41. Uno K, Hayashi K, Hayashi T et al (1998) Particle adsorption in evaporating droplets of polymer latex dispersions on hydrophilic and hydrophobic surfaces. Colloid Polym Sci 276:810–815. doi: 10.1007/s003960050314 CrossRefGoogle Scholar
  42. Vochten R, Petre G (1973) Study of the heat of reversible adsorption at the air-solution interface. II. Experimental determination of the heat of reversible adsorption of some alcohols. J Colloid Interface Sci 42:320–327. doi: 10.1016/0021-9797(73)90295-6 CrossRefGoogle Scholar
  43. Xu X, Luo J (2007) Marangoni flow in an evaporating water droplet. Appl Phys Lett 91:124102. doi: 10.1063/1.2789402 CrossRefGoogle Scholar
  44. Xu X, Ma L, Huang D et al (2014) Linear growth of colloidal rings at the edge of drying droplets. Colloids Surf A Physicochem Eng Asp 447:28–31. doi: 10.1016/j.colsurfa.2014.01.068 CrossRefGoogle Scholar
  45. Yakhno T (2008) Salt-induced protein phase transitions in drying drops. J Colloid Interface Sci 318:225–230. doi: 10.1016/j.jcis.2007.10.020 CrossRefGoogle Scholar
  46. Zhong X, Duan F (2016a) Disk to dual ring deposition transformation in evaporating nanofluid droplets from substrate cooling to heating. Phys Chem Chem Phys 18:20664–20671. doi: 10.1039/C6CP03231A CrossRefGoogle Scholar
  47. Zhong X, Duan F (2014) Evaporation of sessile droplets affected by graphite nanoparticles and binary base fluids. J Phys Chem B 118:13636–13645. doi: 10.1021/jp508051y CrossRefGoogle Scholar
  48. Zhong X, Duan F (2016b) Flow regime and deposition pattern of evaporating binary mixture droplet suspended with particles. Eur Phys J E 39:18. doi: 10.1140/epje/i2016-16018-5 CrossRefGoogle Scholar
  49. Zhong X, Wu C, Duan F (2017) From enhancement to elimination of dual-ring pattern of nanoparticles from sessile droplets by heating the substrate. Appl Therm Eng 115:1418–1423. doi: 10.1016/j.applthermaleng.2016.11.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.LAMIH Laboratory, CNRS UMR 8201University of ValenciennesValenciennesFrance
  2. 2.University of Lille Nord de FranceVilleneuve d’AscqFrance
  3. 3.The VEDECOM InstituteVersaillesFrance
  4. 4.School of Engineering, Kings BuildingsUniversity of EdinburghEdinburghUK
  5. 5.International Institute for Carbon-Neutral Energy Research (I2CNER)Kyushu UniversityFukuokaJapan

Personalised recommendations