Advertisement

Electropreconcentration of nanoparticles using a radial micro-nanofluidic device

  • K. AïzelEmail author
  • Y. Fouillet
  • C. Pudda
Brief Communication

Abstract

We have developed a radial silicon micro-nanofluidic device in order to investigate strong nanoparticles electropreconcentration. The device is called “ring like” device and exhibits a circular micro-nanojunction. Hundred-nanometer-deep radial nanochannels were fabricated using standard photolithography and etching techniques. Ion permselectivity is one of the major proprieties of nanofluidic devices. Within the influence of an electric field through an ion-selective nanochannel, nanoparticle repulsion and concentration appear at the anodic and cathodic side, respectively. Here, the cathodic preconcentration is exploited to enriched 50-nm nanoparticles samples. Up to 800, enrichment factor is reached in 1 h of experiment. This scheme could be useful for the enrichment of bionanoparticles (such as viruses or exosomes for instance) which can be critical for several biomedical applications.

Keywords

Radial nanochannels Electropreconcentration Nanobeads Electrophoresis Biomedical applications 

Notes

Acknowledgments

This work was supported by the Department of Micro Technologies for Biology and Healthcare of the Commissariat à l’Energie Atomique (CEA). This work has also been performed with the help of the “Plateforme Technologique Amont” de Grenoble, with the financial support of the “Nanosciences aux limites de la Nanoélectronique” Foundation.

Supplementary material

Supplementary material 1 (MPG 5800 kb)

Supplementary material 2 (MPG 2900 kb)

References

  1. Aïzel K, Agache V, Pudda C et al (2013) Enrichment of nanoparticles and bacteria using electroless and manual actuation modes of a bypass nanofluidic device. Lab Chip 13:4476. doi: 10.1039/c3lc50835h CrossRefGoogle Scholar
  2. Bocquet L, Charlaix E (2010) Nanofluidics, from bulk to interfaces. Chem Soc Rev 39:1073–1095CrossRefGoogle Scholar
  3. Burg TP, Godin M, Knudsen SM et al (2007) Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446:1066–1069CrossRefGoogle Scholar
  4. Cooksey GA, Sip CG, Folch A (2008) A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab Chip 9:417–426CrossRefGoogle Scholar
  5. Engelmann I, Petzold D, Kosinska A et al (2008) Rapid quantitative PCR assays for the simultaneous detection of herpes simplex virus, varicella zoster virus, cytomegalovirus, Epstein–Barr virus, and human herpesvirus 6 DNA in blood and other clinical specimens. J Med Virol 80:467–477CrossRefGoogle Scholar
  6. Fraikin JL, Teesalu T, McKenney CM et al (2011) A high-throughput label-free nanoparticle analyser. Nat Nanotechnol 6:308–313CrossRefGoogle Scholar
  7. Hamblin MN, Xuan J, Maynes D et al (2009) Selective trapping and concentration of nanoparticles and viruses in dual-height nanofluidic channels. Lab Chip 10:173–178CrossRefGoogle Scholar
  8. Hazelton PR, Gelderblom HR (2003) Electron microscopy for rapid diagnosis of emerging infectious agents. Emerg Infect Dis 9:294CrossRefGoogle Scholar
  9. Ignatovich FV, Novotny L (2006) Real-time and background-free detection of nanoscale particles. Phys Rev Lett 96:13901CrossRefGoogle Scholar
  10. Karnik R, Castelino K, Majumdar A (2006) Field-effect control of protein transport in a nanofluidic transistor circuit. Appl Phys Lett 88:123114. doi: 10.1063/1.2186967 CrossRefGoogle Scholar
  11. Karnik R, Duan C, Castelino K et al (2007) Rectification of ionic current in a nanofluidic diode. Nano Lett 7:547–551. doi: 10.1021/nl062806o CrossRefGoogle Scholar
  12. Kim SJ, Han J (2008) Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications. Anal Chem 80:3507–3511CrossRefGoogle Scholar
  13. Kim SJ, Li LD, Han J (2009) Amplified electrokinetic response by concentration polarization near nanofluidic channel. Langmuir 25:7759–7765. doi: 10.1021/la900332v CrossRefGoogle Scholar
  14. Kutchoukov VG, Laugere F, van Der Vlist W et al (2004) Fabrication of nanofluidic devices using glass-to-glass anodic bonding. Sens Actuators A 114:521–527CrossRefGoogle Scholar
  15. Lee JH, Song Y-A, Han J (2008a) Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. Lab Chip 8:596. doi: 10.1039/b717900f CrossRefGoogle Scholar
  16. Lee JH, Song YA, Tannenbaum SR, Han J (2008b) Increase of reaction rate and sensitivity of low-abundance enzyme assay using micro/nanofluidic preconcentration chip. Anal Chem 80:3198–3204CrossRefGoogle Scholar
  17. Lee JH, Cosgrove BD, Lauffenburger DA, Han J (2009) Microfluidic concentration-enhanced cellular kinase activity assay. J Am Chem Soc 131:10340–10341CrossRefGoogle Scholar
  18. Li J, Gershow M, Stein D et al (2003) DNA molecules and configurations in a solid-state nanopore microscope. Nat Mater 2:611–615. doi: 10.1038/nmat965 CrossRefGoogle Scholar
  19. Mao X, Reschke BR, Timperman AT (2010) Analyte transport past a nanofluidic intermediate electrode junction in a microfluidic device. Electrophoresis 31:2686–2694CrossRefGoogle Scholar
  20. Miller SA, Kelly KC, Timperman AT (2008) Ionic current rectification at a nanofluidic/microfluidic interface with an asymmetric microfluidic system. Lab Chip 8:1729. doi: 10.1039/b808179d CrossRefGoogle Scholar
  21. Mitra A, Deutsch B, Ignatovich F et al (2010) Nano-optofluidic detection of single viruses and nanoparticles. ACS Nano 4:1305–1312CrossRefGoogle Scholar
  22. Mitra A, Ignatovich F, Novotny L (2011) Real-time optical detection of single human and bacterial viruses based on dark-field interferometry. Biosens Bioelectron 31:499–504CrossRefGoogle Scholar
  23. Mitra A, Ignatovich F, Novotny L (2012) Nanofluidic preconcentration and detection of nanoparticles. J Appl Phys 112:014304CrossRefGoogle Scholar
  24. Persson F, Fritzsche J, Mir KU et al (2012) Lipid-based passivation in nanofluidics. Nano Lett 12:2260CrossRefGoogle Scholar
  25. Plecis A, Nanteuil C, Haghiri-Gosnet AM, Chen Y (2008) Electropreconcentration with charge-selective nanochannels. Anal Chem 80:9542–9550CrossRefGoogle Scholar
  26. Pu Q, Yun J, Temkin H, Liu S (2004) Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett 4:1099–1103CrossRefGoogle Scholar
  27. Salieb-Beugelaar GB, Teapal J, Nieuwkasteele J et al (2008) Field-dependent DNA mobility in 20 nm high nanoslits. Nano Lett 8:1785–1790CrossRefGoogle Scholar
  28. Scarff B, Escobedo C, Sinton D (2011) Radial sample preconcentration. Lab Chip 11:1102–1109CrossRefGoogle Scholar
  29. Schoch RB, Han J, Renaud P (2008) Transport phenomena in nanofluidics. Rev Mod Phys 80:839CrossRefGoogle Scholar
  30. Shao H, Chung J, Balaj L et al (2012) Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med 18:1835–1840CrossRefGoogle Scholar
  31. Stavis SM, Geist J, Gaitan M (2010) Separation and metrology of nanoparticles by nanofluidic size exclusion. Lab Chip 10:2618. doi: 10.1039/c0lc00029a CrossRefGoogle Scholar
  32. Storm A, Chen J, Zandbergen H, Dekker C (2005) Translocation of double-strand DNA through a silicon oxide nanopore. Phys Rev E. doi: 10.1103/PhysRevE.71.051903 Google Scholar
  33. Tegenfeldt JO, Prinz C, Huang RL et al (2004) Micro- and nanofluidics for DNA analysis. Anal Bioanal Chem 378:1678–1692. doi: 10.1007/s00216-004-2526-0 CrossRefGoogle Scholar
  34. Vlassiouk I, Siwy ZS (2007) Nanofluidic diode. Nano Lett 7:552–556. doi: 10.1021/nl062924b CrossRefGoogle Scholar
  35. Wang Y-C, Han J (2008) Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator. Lab Chip 8:392. doi: 10.1039/b717220f CrossRefGoogle Scholar
  36. Wang Y-C, Stevens AL, Han J (2005) Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal Chem 77:4293–4299. doi: 10.1021/ac050321z CrossRefGoogle Scholar
  37. Xuan J, Hamblin MN, Stout JM et al (2011) Surfactant addition and alternating current electrophoretic oscillation during size fractionation of nanoparticles in channels with two or three different height segments. J Chromatogr 1218:9102–9110CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Technologies for Healthcare and Biology DivisionCEA-LETI, MINATEC CampusGrenobleFrance

Personalised recommendations