Journal of Nanoparticle Research

, 15:1878 | Cite as

Direct gas-phase synthesis of single-phase β-FeSi2 nanoparticles

  • Robert BywalezEmail author
  • Hans Orthner
  • Ervin Mehmedovic
  • Robert Imlau
  • Andras Kovacs
  • Martina Luysberg
  • Hartmut Wiggers
Research Paper


For the first time, phase-pure β-FeSi2 nanoparticles were successfully produced by gas-phase synthesis. We present a method to fabricate larger quantities of semiconducting β-FeSi2 nanoparticles, with crystallite sizes between 10 and 30 nm, for solar and thermoelectric applications utilizing a hot-wall reactor. A general outline for the production of those particles by thermal decomposition of silane and iron pentacarbonyl is provided based on kinetic data. The synthesized particles are investigated by X-ray diffraction and transmission electron microscopy, providing evidence that the as-prepared materials are indeed β-FeSi2, while revealing morphological characteristics inherent to the nanoparticles created.


Gas-phase synthesis Nanoparticles β-iron disilicide Semiconductor 



This study was supported by the German Federal Ministry of Education and Research (BMBF), grant 03SF0402A (NADNuM).


  1. Akiyama K, Ohya S, Funakubo H (2004) Preparation of β-FeSi2 thin film by metal organic vapor deposition using iron carbonyl and mono-silane. Thin Solid Films 461:40–43CrossRefGoogle Scholar
  2. Antonov VN, Jepsen O (1998) Electronic structure and optical properties of β-FeSi2. Phys Rev B 57:8934–8938CrossRefGoogle Scholar
  3. Bux SK, Blair RG, Gogna PK, Lee H, Chen G, Dresselhaus MS, Kaner RB, Fleurial JP (2009) Nanostructured bulk silicon as an effective thermoelectric material. Adv Funct Mater 19:2445–2452CrossRefGoogle Scholar
  4. Dahal N, Chikan V (2010) Phase-controlled synthesis of iron silicide (Fe3Si and FeSi2) nanoparticles in solution. Chem Mater 22:2892–2897CrossRefGoogle Scholar
  5. Dusausoy Y, Protas J, Wandji R, Roques B (1971) Structure cristalline du disilicure de Fer, FeSi2 β. Acta Cryst B27:1209–1218CrossRefGoogle Scholar
  6. Giesen B, Orthner HR, Kowalik A, Roth P (2004) On the interaction of coagulation and coalescence during gas-phase synthesis of Fe-nanoparticle agglomerates. Chem Eng Sci 59:2201–2211CrossRefGoogle Scholar
  7. Han L, Xin-Feng T, Wie-Qiang C, Qing-Jie Z (2009) Quick preparation and thermal transport properties of nanostructured β-FeSi2 bulk material. Chinese Phys B 18:287–292CrossRefGoogle Scholar
  8. Heinrich A, Griessmann H, Behr G, Ivanenko K, Schumann J, Vinzelberg H (2001) Thermoelectric properties of β-FeSi2 single crystals and polycrystalline β-FeSi2+x thin films. Thin Solid Films 381:287–295CrossRefGoogle Scholar
  9. Hong SJ, Rhee CK, Chun BS (2006) Phase transition and thermoelectric property of ultra-fine structured β-FeSi2 compounds. Sol Stat Phen 118:591–596CrossRefGoogle Scholar
  10. Imai A, Kunimatsu S, Akiyama K, Terai Y, Maeda Y (2007) Submicron dry-etching behavior of β-FeSi2 thin films towards fabrication of photonic crystals. Thin Solid Films 515:8162–8165CrossRefGoogle Scholar
  11. Kakemoto H, Makita Y, Sakuragi SH, Tsukamoto T (1999) Synthesis and properties of semiconducting iron disilicide β-FeSi2. Jpn J Appl Phys 38:5192–5199CrossRefGoogle Scholar
  12. Kameyama T, Sakanaka K, Arakawa H, Motoe A, Tsunoda T, Fukuda K (1993) Preparation of ultrafine Fe-Si-C powders in a radio-frequency thermal plasma and their catalytic properties. J Mat Sci 28:4630–4636CrossRefGoogle Scholar
  13. Lutterotti L, Bortolotti M, Ischia G, Lonardelli I, Wenk HR (2007) Rietveld texture analysis from diffraction images. Z Kristallogr Suppl 26:125–130CrossRefGoogle Scholar
  14. Mahan JE, Geib KM, Robinson GY, Long RG, Xinghua Y, Bai G, Nicolet M, Nathan M (1990) Epitaxial films of semiconducting FeSi2 on (001) silicon. Appl Phys Lett 56:2126–2128CrossRefGoogle Scholar
  15. Massalski T, Bennet L, Murray J, Baker H (1990) Binary alloy phase diagrams. ASM International, Materials ParkGoogle Scholar
  16. Medea Y (2007) Semiconducting β-FeSi2 towards optoelectronics and photonics. Thin Solid Films 515:8118–8121CrossRefGoogle Scholar
  17. Meng QS, Fan WH, Chen RX, Munir ZA (2010) Thermoelectric properties of nanostructured FeSi2 prepared by field-activated and pressure-assisted reactive sintering. J Alloys Compd 492:303–306CrossRefGoogle Scholar
  18. Moniruzzaman CG, Park HG, Park KY (2007) Analysis of iron particle growth in aerosol reactor by a discrete-sectional model. Korean J Chem Eng 24:299–304CrossRefGoogle Scholar
  19. Nagai H, Katsuyama S, Nakayama S, Kobayashi H, Majima K, Ito M (1998) Effects of mechanical alloying and chopper addition on thermoelectric properties of n-type and p-type β-FeSi2 Mat. Trans JIM 4:515–521CrossRefGoogle Scholar
  20. Naito M, Ishimaru M (2009) Formation process of β-FeSi2 from amorphous Fe-Si synthesized by ion implantation: Fe concentration dependence. J Microsc 236:123–127CrossRefGoogle Scholar
  21. Onischuk AA, Strunin VP, Ushakova MA, Panfilov VN (1998) Studying of silane thermal decomposition mechanism. Chem Kinet 30:99–110CrossRefGoogle Scholar
  22. Onischuk AA, Levykin AI, Strunin VP, Ushakova MA, Samoilova RI, Sabelfeld KK, Panfilov VN (2000) Aerosol formation under heterogeneous/homogeneous thermal decomposition of silane: experiment and numerical modeling. J Aerosol Sci 31:879–906CrossRefGoogle Scholar
  23. Ootsuka T, Liu Z, Osamura M, Fukuzawa Y, Otogawa N, Nakayama Y, Tanoue H, Makita Y (2005) β-FeSi2 based metal-insulator-semiconducting devices formed by sputtering for optoelectronic applications. Mat Sci Eng B 124–125:449–452CrossRefGoogle Scholar
  24. Petersen EL, Crofton MW (2003) Measurements of high-temperature silane pyrolysis using SiH4 IR emission and SiH2 laser absorption. J Phys Chem A 107:10988–10995CrossRefGoogle Scholar
  25. Powalla M, Herz K (1993) Co-evaporated thin films of semiconducting β-FeSi2. Appl Surf Sci 65(66):482–488CrossRefGoogle Scholar
  26. Qiu Y, Shen H, Yin Y, Wu K (2007) Fabrication and thermoelectric properties of β-FeSi2 prepared by mechanical alloying. Trans Nonferrous Met Soc China 17:618–621CrossRefGoogle Scholar
  27. Schaaf P, Milosavljevic M, Dhar S, Bibic N, Lieb KP, Wölz M, Principi G (2002) Mössbauer optimization of the direct synthesis of b-FeSi2 by ion beam mixing of Fe/Si bilayers. Hyperfine Interactions 139(149):615–621CrossRefGoogle Scholar
  28. Senthilarasu S, Sathyamoorthy R, Lalitha S (2004) Synthesis and characterization of β-FeSi2 grown by thermal annealing of Fe/Si bilayers for photovoltaic applications. Sol Energy Mater Sol Cells 82:299–305CrossRefGoogle Scholar
  29. Stadelmann PA (1987) EMS—a software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21:131–145CrossRefGoogle Scholar
  30. Swihart MT, Girshick SL (1999) Thermochemistry and kinetics of silicon cluster formation during thermal decomposition of silane. J Phys Chem B 103:64–76CrossRefGoogle Scholar
  31. Tatar B, Kutlu K, Ürgen M (2007) Synthesis of β-FeSi2/Si heterojunctions for photovoltaic applications by unbalanced magnetron sputtering. Thin Solid Films 516:13–16CrossRefGoogle Scholar
  32. Udono H, Kikuma I, Okuno T, Masumoto Y, Tajima H, Komuro S (2004) Optical properties of β-FeSi2 single crystals grown from solutions. Thin Solid Films 461:182–187CrossRefGoogle Scholar
  33. Wan Q, Wang TH, Lin CL (2003) Synthesis and optical properties of semiconducting beta-FeSi2 nanocrystals. Appl Phys Lett 82:3224–3226CrossRefGoogle Scholar
  34. Wang JF, Ji SY, Mimura K, Sato Y, Song SH, Yamane H, Shimada M, Isshiki M (2004) Growth of β-FeSi2 single crystals by the chemical vapor transport method. Phys Stat Sol A 201:2905–2909Google Scholar
  35. Wang JF, Saitou S, Ji SY, Isshiki M (2006) Growth conditions of β-FeSi2 single crystals by chemical vapor transport. J Crystal Growth 295:129–132CrossRefGoogle Scholar
  36. Wen JZ, Goldsmith CF, Ashcraft RW, Green WH (2007) Detailed kinetic modeling of iron nanoparticle synthesis from the decomposition of Fe(CO)5. J Phys Chem C 111:5677–5688CrossRefGoogle Scholar
  37. Wiggers H, Starke R, Roth P (2001) Silicon particle formation by pyrolysis of silane in a hot wall gasphase reactor. Chem Eng Technol 24:261–264CrossRefGoogle Scholar
  38. Yamaguchi K, Heya A, Shimura K, Katsumata T, Yamamoto H, Hojou K (2004) Effect of target compositions on the crystallinity of β-FeSi2 prepared by ion beam sputter deposition method. Thin Solid Films 461:17–21CrossRefGoogle Scholar
  39. Yamane H, Yamada T (2009) Effects of stacking fault on the diffraction intensities of β-FeSi2. J Alloys Compd 476:282–287CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Robert Bywalez
    • 1
    Email author
  • Hans Orthner
    • 1
  • Ervin Mehmedovic
    • 1
  • Robert Imlau
    • 2
  • Andras Kovacs
    • 2
  • Martina Luysberg
    • 2
  • Hartmut Wiggers
    • 1
    • 3
  1. 1.IVG, Institute for Combustion and Gas Dynamics – Reactive FluidsUniversity of Duisburg-EssenDuisburgGermany
  2. 2.Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute 5Forschungszentrum JülichJülichGermany
  3. 3.CENIDE, Center for Nanointegration Duisburg-EssenDuisburgGermany

Personalised recommendations