Advertisement

Natural Computing

, Volume 18, Issue 4, pp 845–853 | Cite as

Optimal and suboptimal regional control of probabilistic cellular automata

  • Franco BagnoliEmail author
  • Sara Dridi
  • Samira El Yacoubi
  • Raúl Rechtman
Article

Abstract

Probabilistic cellular automata are extended stochastic systems, widely used for modelling phenomena in many disciplines. The possibility of controlling their behaviour is therefore an important topic. We shall present here an approach to the problem of controlling such systems by acting only on the boundary of a target region. In particular we are interested in optimal control, which is rather demanding in computational terms, so we present also a less demanding suboptimal method. Finally, we present an example of optimal control with avoidance.

Keywords

Probabilistic cellular automata Control theory Boundary control Reachability 

Mathematics Subject Classification

34H10 37B15 49J21 

Notes

References

  1. ACRI (2002) Proceedings of the ACRI (Cellular Automata for Research and Industry) conference. Cellular Automata. Lectures Notes in Computer Science, LNCS 2493, Springer.  https://doi.org/10.1007/3-540-45830-1 zbMATHGoogle Scholar
  2. ACRI (2004) Proceedings of the ACRI  (Cellular Automata for Research and Industry) conference.  Cellular Automata. Lectures Notes in Computer Science, LNCS 3305, Springer.  https://doi.org/10.1007/b102055 zbMATHGoogle Scholar
  3. ACRI (2006) Proceedings of the ACRI  (Cellular Automata for Research and Industry) conference. Cellular Automata. Lectures Notes in Computer Science, LNCS 4173, Springer.  https://doi.org/10.1007/11861201 zbMATHGoogle Scholar
  4. ACRI (2008) Proceedings of the ACRI  (Cellular Automata for Research and Industry) conference. Cellular Automata. Lectures Notes in Computer Science, LNCS 5191, Springer.  https://doi.org/10.1007/978-3-540-79992-4 zbMATHGoogle Scholar
  5. ACRI (2010) Proceedings of the ACRI  (Cellular Automata for Research and Industry) conference.  Cellular Automata. (Lectures Notes in Computer Science, LNCS 6350, Springer).  https://doi.org/10.1007/978-3-642-15979-4 zbMATHGoogle Scholar
  6. ACRI (2012) Proceedings of the ACRI  (Cellular Automata for Research and Industry) conference. Cellular Automata. Lectures Notes in Computer Science, LNCS 7495, Springer.  https://doi.org/10.1007/978-3-642-33350-7 zbMATHGoogle Scholar
  7. ACRI (2014) Proceedings of the ACRI  (Cellular Automata for Research and Industry) conference. Cellular Automata. Lectures Notes in Computer Science, LNCS 8751, Springer.  https://doi.org/10.1007/978-3-319-11520-7 Google Scholar
  8. ACRI (2016) Proceedings of the ACRI  (Cellular Automata for Research and Industry) conference. Cellular Automata. Lectures Notes in Computer Science, LNCS 9863, Springer.  https://doi.org/10.1007/978-3-319-44365-2 zbMATHGoogle Scholar
  9. ACRI (2018) Proceedings of the ACRI  (Cellular Automata for Research and Industry) conference. Cellular Automata Lectures Notes in Computer Science, LNCS 11115, Springer.  https://doi.org/10.1007/978-3-319-99813-8 Google Scholar
  10. Bagnoli F (1992) Boolean derivatives and computation of cellular automata. Int J Mod Phys C 3:307.  https://doi.org/10.1142/S0129183192000257 MathSciNetCrossRefzbMATHGoogle Scholar
  11. Bagnoli F (1998) Cellular automata. In: Bagnoli F, Liò P, Ruffo S (eds) Dynamical modelling in biotechnologies. World Scientific, Singapore, p 3.  https://doi.org/10.1142/9789812813053_0001 CrossRefGoogle Scholar
  12. Bagnoli F, Rechtman R (1999) Synchronization and maximum Lyapunov exponents of cellular automata. Phys Rev E 59:R1307.  https://doi.org/10.1103/PhysRevE.59.R1307 CrossRefzbMATHGoogle Scholar
  13. Bagnoli F, Rechtman R (2018) Regional synchronization of a probabilistic cellular automaton. In: Mauri G, El Yacoubi S, Dennunzio A, Nishinari K, Manzoni L (eds) Proceedings of the 9th international conference on cellular automata for research and industry cellular automata, ACRI2018, vol 11115. Lecture notes in computer science. Springer, Berlin, p 255.  https://doi.org/10.1007/978-3-319-99813-8_23 CrossRefGoogle Scholar
  14. Bagnoli F, Rechtman R (2019) Damage spreading, chaos and regional synchronization of a probabilistic cellular automaton. J Cell Autom (in press) Google Scholar
  15. Bagnoli F, Boccara N, Rechtman R (2001) Nature of phase transitions in a probabilistic cellular automaton with two absorbing states. Phys Rev E 63:046116.  https://doi.org/10.1103/PhysRevE.63.046116 CrossRefGoogle Scholar
  16. Bagnoli F, El Yacoubi S, Rechtman R (2010) Synchronization and control of cellular automata. In: Bandini S, Manzoni S, Umeo H, Vizzari G (eds) Proceedings of the 9th international conference on cellular automata for research and industry, cellular automata, ACRI2010, vol 6350. Lecture notes in computer science. Springer, Berlin, p 188.  https://doi.org/10.1007/978-3-642-15979-4_21 Google Scholar
  17. Bagnoli F, Rechtman R, El Yacoubi S (2012) Control of cellular automata. Phys Rev E 86:066201.  https://doi.org/10.1103/PhysRevE.86.066201 CrossRefzbMATHGoogle Scholar
  18. Bagnoli F, El Yacoubi S, Rechtman R (2017) Toward a boundary regional control problem for Boolean cellular automata. Nat Comput  https://doi.org/10.1007/s11047-017-9626-1 MathSciNetCrossRefGoogle Scholar
  19. Bagnoli F, El Yacoubi S, Rechtman R (2018a) Control of cellular automata. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, Berlin.  https://doi.org/10.1007/978-3-642-27737-5_710-1 CrossRefzbMATHGoogle Scholar
  20. Bagnoli F, Dridi S, El Yacoubi S, Rechtman R (2018b) Regional control of probabilistic cellular automata. In: Mauri G, El Yacoubi S, Dennunzio A, Nishinari K, Manzoni L (eds) Proceedings of the 9th international conference on cellular automata for research and industry, cellular automata, ACRI2018, vol 11115. Lecture notes in computer science. Springer, Berlin, p 243.  https://doi.org/10.1007/978-3-319-99813-8_22 CrossRefGoogle Scholar
  21. Bel Fekih A, El Jai A (2006) Regional analysis of a class of cellular automata models. In: El Yacoubi S, Chopard B, Bandini S (eds) Proceedings of the 7th international conference on cellular automata for research and industry cellular automata, ACRI 2006, vol 4173. Lecture notes in computer science. Springer, Berlin, pp 48–57.  https://doi.org/10.1007/11861201_9 CrossRefzbMATHGoogle Scholar
  22. Berlekamp ER, Conway JH, Guy RK (1982) Winning ways for your mathematical plays II. Academic Press, New York EAN 9781568811420zbMATHGoogle Scholar
  23. Boccara N, Goles E, Martínez S, Picco P (1983) Cellular automata and cooperative systems, vol 396. Nato science series C. Springer, Netherlands.  https://doi.org/10.1007/978-94-011-1691-6 CrossRefGoogle Scholar
  24. Burks AW (1970) Essays on cellular automata. University of Illinois Press, ChampaignzbMATHGoogle Scholar
  25. Chopard B, Droz M (1998) Cellular automata modeling of physical systems. Cambridge University Press, Cambridge.  https://doi.org/10.1007/978-1-4614-1800-9_27 CrossRefzbMATHGoogle Scholar
  26. Codd EF (1968) Cellular automata. Academic Press, New YorkzbMATHGoogle Scholar
  27. Damiani C, Serra R, Villani M, Kauffman SA, Colacci A (2011) Cell-cell interaction and diversity of emergent behaviours. IET Syst Biol 5:137.  https://doi.org/10.1049/iet-syb.2010.0039 CrossRefGoogle Scholar
  28. Derrida B, Stauffer D (1986) Phase transitions in two-dimensional Kauffman cellular automata. Europhys Lett 2:739CrossRefGoogle Scholar
  29. Deutsch A, Dormann S (2005) Cellular automaton modeling of biological pattern formation: characterization, applications, and analysis. Birkhäuser, BerlinzbMATHGoogle Scholar
  30. Domany E, Kinzel W (1984) Equivalence of cellular automata to Ising models and directed percolation. Phys Rev Lett 53:311–314MathSciNetCrossRefGoogle Scholar
  31. El Yacoubi S, El Jai A, Ammor N (2002) Regional controllability with cellular automata models. In: Bandini S, Chopard B, Tomassini M (eds) Proceedings of the 5th international conference on cellular automata for research and industry, cellular automata, ACRI2002, vol 2493. Lecture notes on computer sciences. Springer, Berlin, pp 357–367zbMATHGoogle Scholar
  32. El Yacoubi S (2008) Mathematical method for control problems on cellular automata models. Int J Syst Sci 39:529–538.  https://doi.org/10.1080/00207720701847232 MathSciNetCrossRefzbMATHGoogle Scholar
  33. Ermentrout G, Edelstein-Keshet L (1993) Cellular automata approaches to biological modeling. J Theor Biol 160:97–133.  https://doi.org/10.1006/jtbi.1993.1007 CrossRefGoogle Scholar
  34. Hinrichsen H, Weitz JS, Domany E (1997) An algorithm-independent definition of damage spreading-application to directed percolation. J Stat Phys 88:617–636.  https://doi.org/10.1023/B:JOSS.0000015165.83255.b7 CrossRefzbMATHGoogle Scholar
  35. Kari J (2005) Theory of cellular automata: a survey. Theor Comput Sci 334:3–33.  https://doi.org/10.1016/j.tcs.2004.11.021 MathSciNetCrossRefzbMATHGoogle Scholar
  36. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22:437.  https://doi.org/10.1016/0022-5193(69)90015-0 MathSciNetCrossRefGoogle Scholar
  37. Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, Oxford, ISBN 978-0195079517Google Scholar
  38. Lions J (1986) Controlabilité exacte des systèmes distribueés. CRAS, Série I 302:471–475MathSciNetzbMATHGoogle Scholar
  39. Lions J (1991) Exact controllability for distributed systems. Some trends and some problems. In: Spigler R (ed) Applied and industrial mathematics, vol 56. Mathematics and its applications. Springer, Dordrecht, pp 59–84.  https://doi.org/10.1007/978-94-009-1908-2_7 CrossRefGoogle Scholar
  40. Louis P-Y, Nardi F (2018) Probabilistic cellular automata, emergence, complexity and computation, vol 27. Springer, Basel.  https://doi.org/10.1007/978-3-319-65558-1 CrossRefGoogle Scholar
  41. Martins ML, Verona de Resende HF, Tsallis C, de Magalhaes ACN (1991) Evidence for a new phase in the Domany–Kinzel cellular automaton. Phys Rev Lett 66:2045CrossRefGoogle Scholar
  42. Russell D (1978) Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Rev 20:639–739.  https://doi.org/10.1137/1020095 MathSciNetCrossRefzbMATHGoogle Scholar
  43. Vichniac G (1984) Simulating physics with cellular automata. Phys D 10:96–115.  https://doi.org/10.1016/0167-2789(84)90253-7 MathSciNetCrossRefzbMATHGoogle Scholar
  44. Wolfram S (1983) Statistical mechanics of cellular automata. Rev Mod Phys 55:601–644MathSciNetCrossRefGoogle Scholar
  45. Wolfram S (1984) Universality and complexity in cellular automata. Physica 10D:1.  https://doi.org/10.1016/0167-2789(84)90245-8 MathSciNetCrossRefzbMATHGoogle Scholar
  46. Zerrik E, Boutoulout A, El Jai A (2000) Actuators and regional boundary controllability for parabolic systems. Int J Syst Sci 31:73–82CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Physics and Astronomy and CSDCUniversity of FlorenceSesto FiorentinoItaly
  2. 2.INFN, sez. FirenzeSesto FiorentinoItaly
  3. 3.Team Project IMAGES_ESPACE-Dev, UMR 228 Espace-Dev IRD UA UM UG URUniversity of Perpignan Via DomitiaPerpignan cedexFrance
  4. 4.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico

Personalised recommendations