Advertisement

A membrane computing framework for self-reconfigurable robots

  • Dongyang Bie
  • Miguel A. Gutiérrez-Naranjo
  • Jie Zhao
  • Yanhe Zhu
Article

Abstract

Self-reconfigurable robots are built by modules which can move in relationship to each other, which allows the robot to change its physical form. Finding a sequence of module moves that reconfigures the robot from the initial configuration to the goal configuration is a hard task and many control algorithms have been proposed. In this paper, we present a novel method which combines a cluster-flow locomotion based on cellular automata together with a decentralized local representation of the spatial geometry based on membrane computing ideas. This new approach has been tested with computer simulations and real-world experiments performed with modular self-reconfigurable robots and represents a new point of view with respect other control methods found in the literature.

Keywords

Modular robots Membrane computing Distributed control Self-reconfiguration Cellular automata P systems 

Notes

Acknowledgements

The work reported in this paper is supported by the Joint Research Fund (U1713201) between the National Natural Science Foundation of China (NSFC) and Shen Zhen. And the work is also supported by the State Key Laboratory of Robotics (2018-O10).

References

  1. Abelson H, DiSessa AA (1981) Turtle geometry: the computer as a medium for exploring mathematics. The MIT Press series in artificial intelligence. MIT Press, Cambridge (edition broche 1986) zbMATHGoogle Scholar
  2. Baca J, Woosley B, Dasgupta P, Nelson CA (2017) Configuration discovery of modular self-reconfigurable robots: real-time, distributed, IR+XBee communication method. Robot Auton Syst 91:284–298CrossRefGoogle Scholar
  3. Bojinov H, Casal A, Hogg T (2000) Emergent structures in modular self-reconfigurable robots. In: Proceedings of the 2000 IEEE international conference on robotics and automation, ICRA 2000, April 24–28, 2000, San Francisco, CA, USA. IEEE, pp 1734–1741.  https://doi.org/10.1109/ROBOT.2000.844846
  4. Bojinov H, Casal A, Hogg T (2002) Multiagent control of self-reconfigurable robots. Artif Intell 142(2):99–120.  https://doi.org/10.1016/S0004-3702(02)00272-2 MathSciNetCrossRefzbMATHGoogle Scholar
  5. Butler ZJ, Rus D (2003) Distributed locomotion algorithms for self-reconfigurable robots operating on rough terrain. In: Proceedings of the IEEE international symposium on computational intelligence in robotics and automation: computational intelligence in robotics and automation for the New Millennium, CIRA 2003, Kobe, Japan, July 16–20, 2003. IEEE, pp 880–885.  https://doi.org/10.1109/CIRA.2003.1222296
  6. Butler Z, Kotay K, Rus D, Tomita K (2001a) Cellular automata for decentralized control of self-reconfigurable robots. In: Proceedings of the IEEE ICRA workshop on modular robots, pp 21–26Google Scholar
  7. Butler Z, Kotay K, Rus D, Tomita K (2001b) Cellular automata for decentralized control of self-reconfigurable robots. In: Proceedings of the IEEE ICRA workshop on modular robots, pp 21–26Google Scholar
  8. Butler Z, Kotay K, Rus D, Tomita K (2002) Generic decentralized control for a class of self-reconfigurable robots. In: IEEE international conference on robotics and automation, 2002. Proceedings. ICRA ’02, vol 1, pp 809–816.  https://doi.org/10.1109/ROBOT.2002.1013457
  9. Butler ZJ, Kotay K, Rus D, Tomita K (2004) Generic decentralized control for lattice-based self-reconfigurable robots. Int J Robot Res 23(9):919–937.  https://doi.org/10.1177/0278364904044409 CrossRefGoogle Scholar
  10. Christensen DJ (2006) Evolution of shape-changing and self-repairing control for the ATRON self-reconfigurable robot. In: Proceedings of the 2006 IEEE international conference on robotics and automation, ICRA 2006, May 15–19, 2006, Orlando, Florida, USA. IEEE, pp 2539–2545.  https://doi.org/10.1109/ROBOT.2006.1642084
  11. Fitch R, Butler ZJ (2007) Scalable locomotion for large self-reconfiguring robots. In: 2007 IEEE international conference on robotics and automation, ICRA 2007, 10–14 April 2007, Roma, Italy. IEEE, pp 2248–2253.  https://doi.org/10.1109/ROBOT.2007.363654
  12. Fitch R, McAllister R (2010) Hierarchical planning for self-reconfiguring robots using module kinematics. In: Martinoli A, Mondada F, Correll N, Mermoud G, Egerstedt M, Hsieh MA, Parker LE, Støy K (eds) Distributed autonomous robotic systems—the 10th international symposium, DARS 2010, Lausanne, Switzerland, November 1–3, 2010, vol 83 of Springer Tracts in Advanced Robotics. Springer, Berlin, pp 477–490.  https://doi.org/10.1007/978-3-642-32723-0_34
  13. Fitch R, Butler Z, Rus D (2003) Reconfiguration planning for heterogeneous self-reconfiguring robots. In: International conference on intelligent robots and systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ, vol 3, IEEE. pp 2460–2467.  https://doi.org/10.1109/IROS.2003.1249239
  14. Fitch R, Butler ZJ, Rus D (2005) Reconfiguration planning among obstacles for heterogeneous self-reconfiguring robots. In: Proceedings of the 2005 IEEE international conference on robotics and automation, ICRA 2005, April 18–22, 2005, Barcelona, Spain. IEEE, pp 117–124.  https://doi.org/10.1109/ROBOT.2005.1570106
  15. Fukuda T, Nakagawa S (1988) Approach to the dynamically reconfigurable robotic system. J Intell Robot Syst 1(1):55–72.  https://doi.org/10.1007/BF00437320 CrossRefGoogle Scholar
  16. Funiak S, Pillai P, Ashley-Rollman MP, Campbell J, Goldstein SC (2009) Distributed localization of modular robot ensembles. Int J Robot Res 28(8):946–961.  https://doi.org/10.1177/0278364909339077 CrossRefGoogle Scholar
  17. Georgiou A, Gheorghe M, Bernardini F (2006) Membrane-based devices used in computer graphics. In: Ciobanu G, Păun G, Pérez-Jiménez MJ (eds) Applications of membrane computing, Natural Computing Series, Springer, Berlin, pp 253–281.  https://doi.org/10.1007/3-540-29937-8_9
  18. Gilpin K, Rus D (2012) What’s in the bag: a distributed approach to 3D shape duplication with modular robots. In: Roy N (ed) Robotics: science and systems VIII. University of Sydney, SydneyGoogle Scholar
  19. Goldstein SC, Campbell J, Mowry TC (2005) Programmable matter. IEEE Comput 38(6):99–101.  https://doi.org/10.1109/MC.2005.198 CrossRefGoogle Scholar
  20. Hou F, Shen W (2014) Graph-based optimal reconfiguration planning for self-reconfigurable robots. Robot Autonom Syst 62(7):1047–1059.  https://doi.org/10.1016/j.robot.2013.06.014 CrossRefGoogle Scholar
  21. Jones CV, Mataric MJ (2003) From local to global behavior in intelligent self-assembly from. In: Proceedings of the 2003 IEEE international conference on robotics and automation, ICRA 2003, September 14–19, 2003, Taipei, Taiwan. IEEE, pp 721–726.  https://doi.org/10.1109/ROBOT.2003.1241679
  22. Kari J (2005) Theory of cellular automata: a survey. Theor Comput Sci 334(1–3):3–33.  https://doi.org/10.1016/j.tcs.2004.11.021 MathSciNetCrossRefzbMATHGoogle Scholar
  23. Naz A, Piranda B, Bourgeois J, Goldstein SC (2018) A time synchronization protocol for large-scale distributed embedded systems with low-precision clocks and neighbor-to-neighbor communications. J Netw Comput Appl 105:123–142CrossRefGoogle Scholar
  24. Ostergaard E, Lund HH (2004) Controlling self-reconfiguration using cellular automata and gradients. In: Proceedings of the 8th international conference on intelligent autonomous systems (IAS-8), pp 291–298Google Scholar
  25. Pillai P, Campbell J, Kedia G, Moudgal S, Sheth K (2006) A 3D fax machine based on claytronics. In: 2006 IEEE/RSJ international conference on intelligent robots and systems, IROS 2006, October 9–15, 2006, Beijing, China. IEEE, pp 4728–4735.  https://doi.org/10.1109/IROS.2006.282264
  26. Piranda B, Laurent GJ, Bourgeois J, Clvy C, Mbes S, Fort-Piat NL (2013) A new concept of planar self-reconfigurable modular robot for conveying microparts. Mechatronics 23(7):906–915.  https://doi.org/10.1016/j.mechatronics.2013.08.009 (1.Fractional Order Modeling and Control in Mechatronics 2. Design,control, and software implementation for distributed {MEMS} (dMEMS))CrossRefGoogle Scholar
  27. Prusinkiewicz P (1986) Graphical applications of L-systems. In: Proceedings on graphics interface ’86/vision interface ’86. Canadian Information Processing Society, Toronto, pp 247–253Google Scholar
  28. Prusinkiewicz P, Lindenmayer A (1990) The algorithmic beauty of plants, Virtual Laboratory. Springer, BerlinCrossRefzbMATHGoogle Scholar
  29. Păun G (1998) Computing with membranes, Technical Report 208. Turku Centre for Computer Science, TurkuGoogle Scholar
  30. Păun G (2000) Computing with membranes. J Comput Syst Sci 61(1):108–143.  https://doi.org/10.1006/jcss.1999.1693 MathSciNetCrossRefzbMATHGoogle Scholar
  31. Păun G (2002) Membrane computing. An introduction. Springer, BerlinCrossRefzbMATHGoogle Scholar
  32. Păun G, Rozenberg G, Salomaa A (eds) (2010) The Oxford handbook of membrane computing. Oxford University Press, OxfordzbMATHGoogle Scholar
  33. Rivero-Gil E, Gutiérrez-Naranjo MA, Romero Jiménez Á, Riscos-Núñez A (2011) A software tool for generating graphics by means of P systems. Nat Comput 10(2):879–890.  https://doi.org/10.1007/s11047-010-9198-9 MathSciNetCrossRefzbMATHGoogle Scholar
  34. Romanishin J, Gilpin K, Rus D (2013) M-blocks: momentum-driven, magnetic modular robots. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, Tokyo, Japan, November 3–7, 2013. IEEE, pp 4288–4295.  https://doi.org/10.1109/IROS.2013.6696971
  35. Romero-Jiménez Á, Gutiérrez-Naranjo MA, Pérez-Jiménez MJ (2006) Graphical modeling of higher plants using P systems. In: Hoogeboom HJ, Păun G, Rozenberg G, Salomaa A (eds) Workshop on membrane computing, vol 4361 of lecture notes in computer science. Springer, Berlin, pp 496–506Google Scholar
  36. Rubenstein M, Shen W (2010) Automatic scalable size selection for the shape of a distributed robotic collective, In: 2010 IEEE/RSJ international conference on intelligent robots and systems, October 18–22, 2010, Taipei, Taiwan. IEEE, pp 508–513.  https://doi.org/10.1109/IROS.2010.5650906
  37. Stoy K (2004) Controlling self-reconfiguration using cellular automata and gradients. In: Proceedings of the 8th international conference on intelligent autonomous systems (IAS-8), pp 693–702Google Scholar
  38. Stoy K (2006) Using cellular automata and gradients to control self-reconfiguration. Robot Autonom Syst 54(2):135–141.  https://doi.org/10.1016/j.robot.2005.09.017 (intelligent Autonomous Systems 8th Conference on IntelligentAutonomous Systems (IAS-8)) CrossRefGoogle Scholar
  39. Stoy K (2015a) Lattice automata for control of self-reconfigurable robots. In: Sirakoulis GC, Adamatzky A (eds), Robots and lattice automata, vol 13 of emergence, complexity and computation. Springer, Berlin, pp 33–45.  https://doi.org/10.1007/978-3-319-10924-4_2 Google Scholar
  40. Stoy K (2015b) Lattice automata for control of self-reconfigurable robots. In: Sirakoulis GC, Adamatzky A (eds) Robots and lattice automata. Springer, Cham, pp 33–45.  https://doi.org/10.1007/978-3-319-10924-4_2 Google Scholar
  41. Stoy K, Nagpal R (2007) Self-reconfiguration using directed growth. In: Alami R, Chatila R, Asama H (eds) Distributed autonomous robotic systems, vol 6. Springer, Tokyo, pp 3–12.  https://doi.org/10.1007/978-4-431-35873-2_1 Google Scholar
  42. Stoy K, Brandt D, Christensen DJ (2010) Self-reconfigurable robots: an introduction. In: Intelligent robotics and autonomous agents. MIT Press, CambridgeGoogle Scholar
  43. Varshavskaya P, Kaelbling LP, Rus D (2008) Automated design of adaptive controllers for modular robots using reinforcement learning. Int J Robot Res 27(3–4):505–526.  https://doi.org/10.1177/0278364907084983 CrossRefGoogle Scholar
  44. Walter JE, Tsai EM, Amato NM (2005) Algorithms for fast concurrent reconfiguration of hexagonal metamorphic robots. IEEE Trans Robot 21(4):621–631.  https://doi.org/10.1109/TRO.2004.842325 CrossRefGoogle Scholar
  45. Wolfram S (1994) Cellular automata and complexity: collected papers. Perseus Books Group, Addison-Wesley Pub. Co., c1994Google Scholar
  46. Wu Q, Wang Y, Cao G, Fei Y (2005) Locomotion control of distributed self-reconfigurable robot based on cellular automata. In: Huang D-S, Zhang X-P, Huang G-B (eds), Advances in intelligent computing, vol 3645 of lecture notes in computer science. Springer, Berlin, pp 179–188.  https://doi.org/10.1007/11538356_19
  47. Yim M, Shen W-M, Salemi B, Rus D, Moll M, Lipson H, Klavins E, Chirikjian GS (2007) Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robot Autom Mag 14(1):43–52.  https://doi.org/10.1109/mra.2007.339623 CrossRefGoogle Scholar
  48. Yoshida E, Murata S, Kurokawa H, Tomita K, Kokaji S (1998) A distributed reconfiguration method for 3D homogeneous structure. In: Proceedings 1998 IEEE/RSJ international conference on intelligent robots and systems. Innovations in theory, practice and applications, October 13–17, 1998, Victoria, BC, Canada. IEEE, pp 852–859.  https://doi.org/10.1109/IROS.1998.727306
  49. Zavlanos MM, Pappas GJ (2008) Dynamic assignment in distributed motion planning with local coordination. IEEE Trans Robot 24(1):232–242.  https://doi.org/10.1109/TRO.2007.913992 CrossRefGoogle Scholar
  50. Zhao J, Wang X, Jin H, Bie D, Zhu Y (2015) Automatic locomotion generation for a ubot modular robot-towards both high-speed and multiple patterns. Int J Adv Robot Syst 12:32CrossRefGoogle Scholar
  51. Zhu Y, Bie D, Iqbal S, Wang X, Gao Y, Zhao J (2015) A simplified approach to realize cellular automata for ubot modular self-reconfigurable robots. J Intell Robot Syst 79(1):37–54.  https://doi.org/10.1007/s10846-014-0084-z CrossRefGoogle Scholar
  52. Zhu Y, Bie D, Wang X, Zhang Y, Jin H, Zhao J (2017) A distributed and parallel control mechanism for self-reconfiguration of modular robots using L-systems and cellular automata. J Parallel Distrib Comput 102:80–90CrossRefGoogle Scholar
  53. Zoppi M (2011) Self-reconfigurable robots: an introduction. Ind Robot Int J.  https://doi.org/10.1108/ir.2011.04938daa.015 Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.The Institute of Robotics and Automatic Information Systems, College of Computer and Control Engineering, and the Tianjin Key Laboratory of Intelligent RoboticsNankai UniversityTianjinChina
  2. 2.State Key Laboratory of Robotics and System (HIT)Harbin Institute of TechnologyHarbinChina
  3. 3.Department of Computer Science and Artificial IntelligenceUniversity of SevilleSevilleSpain

Personalised recommendations