A survey of cellular automata: types, dynamics, non-uniformity and applications

  • Kamalika BhattacharjeeEmail author
  • Nazma Naskar
  • Souvik Roy
  • Sukanta Das


Cellular automata (CAs) are dynamical systems which exhibit complex global behavior from simple local interaction and computation. Since the inception of cellular automaton (CA) by von Neumann in 1950s, it has attracted the attention of several researchers over various backgrounds and fields for modeling different physical, natural as well as real-life phenomena. Classically, CAs are uniform. However, non-uniformity has also been introduced in update pattern, lattice structure, neighborhood dependency and local rule. In this survey, we tour to the various types of CAs introduced till date, the different characterization tools, the global behavior of CAs, like universality, reversibility, dynamics etc. Special attention is given to non-uniformity in CAs and especially to non-uniform elementary CAs, which have been very useful in solving several real-life problems.


Cellular automata (CAs) Types Characterization tools Dynamics Non-uniformity Technology 

Mathematics Subject Classification

68Q80 37B15 



The authors gratefully acknowledge the anonymous reviewers for their comments and suggestions, which have helped to improve the quality and readability of the paper.


  1. Acerbi L, Dennunzio A, Formenti E (2009) Conservation of some dynamical properties for operations on cellular automata. Theor Comput Sci 410(38–40):3685–3693MathSciNetzbMATHCrossRefGoogle Scholar
  2. Adak S, Naskar N, Maji P, Das S (2016) On synthesis of non-uniform cellular automata having only point attractors. J Cell Autom 12(1–2):81–100MathSciNetGoogle Scholar
  3. Adamatzky AI (1996) Computation of shortest path in cellular automata. Math Comput Model 23(4):105–113MathSciNetzbMATHCrossRefGoogle Scholar
  4. Adami C (1995) Self-organized criticality in living systems. Phys Lett A 203(1):29–32CrossRefGoogle Scholar
  5. Albert J, Culik K II (1987) A simple universal cellular automaton and its one-way and totalistic version. Complex Syst 1:1–16MathSciNetzbMATHGoogle Scholar
  6. Albicki A, Khare M (1987) Cellular automata used for test pattern generation. In: Proceedings of international conference of computer design, pp 56–59Google Scholar
  7. Alonso-Sanz R, Bull L (2009) Elementary cellular automata with minimal memory and random number generation. Complex Syst 18(2):195–213MathSciNetzbMATHGoogle Scholar
  8. Amoroso S, Cooper G (1970) The garden-of-eden theorem for finite configurations. Proc Am Math Soc 26(1):158–164MathSciNetzbMATHCrossRefGoogle Scholar
  9. Amoroso S, Patt YN (1972) Decision procedures for surjectivity and injectivity of parallel maps for tesselation structures. J Comput Syst Sci 6:448–464zbMATHCrossRefGoogle Scholar
  10. Arbib MA (1966) Simple self-reproducing universal automata. Inf Control 9:177–189zbMATHCrossRefGoogle Scholar
  11. Atrubin AJ (1965) A one-dimensional real-time iterative multiplier. IEEE Trans Electron Comput EC–14(3):394–399CrossRefGoogle Scholar
  12. Banda P, Caughman J, Pospichal J (2015) Configuration symmetry and performance upper bound of one-dimensional cellular automata for the leader election problem. J Cell Autom 10(1–2):1–21MathSciNetzbMATHGoogle Scholar
  13. Banks ER (1970) Universality in cellular automata. In: Proceedings of IEEE conference record of 11th annual symposium on switching and automata theory, 1970. IEEE, pp 194–215Google Scholar
  14. Banks ER (1971) Information processing and transmission in cellular automata. Ph.D. thesis, MITGoogle Scholar
  15. Bao F (2004) Cryptanalysis of a partially known cellular automata cryptosystem. IEEE Trans Comput 53(11):1493–1497CrossRefGoogle Scholar
  16. Bardell PH (1990) Analysis of cellular automata used as pseudo-random pattern generators. In: Proceedings of international test conference, pp 762–768Google Scholar
  17. Beckers A, Worsch T (2001) A perimeter-time ca for the queen bee problem. Parallel Comput 27(5):555–569MathSciNetzbMATHCrossRefGoogle Scholar
  18. Benjamin SC, Johnson NF (1997) A possible nanometer-scale computing device based on an adding cellular automaton. Appl Phys Lett 70(17):2321–2323CrossRefGoogle Scholar
  19. Betel H, de Oliveira PPB, Flocchini P (2013) Solving the parity problem in one-dimensional cellular automata. Nat Comput 12(3):323–337MathSciNetzbMATHCrossRefGoogle Scholar
  20. Bhattacharjee K, Das S (2016) Reversibility of \(d\)-state finite cellular automata. J Cell Autom 11(2–3):213–245MathSciNetGoogle Scholar
  21. Bhattacharjee K, Paul D, Das S (2017) Pseudo-random number generation using a 3-state cellular automaton. Int J Mod Phys C 28(06):1750–078MathSciNetCrossRefGoogle Scholar
  22. Bhattacharjee S, Bhattacharya J, Chaudhuri PP (1995) An efficient data compression hardware based on cellular automata. In: Proceedings of data compression conference (DCC95), p 472Google Scholar
  23. Blanchard F, Maass A (1997) Dynamical properties of expansive one-sided cellular automata. Israel J Math 99(1):149–174MathSciNetzbMATHCrossRefGoogle Scholar
  24. Blok HJ, Bergersen B (1999) Synchronous versus asynchronous updating in the “game of life”. Phys Rev E 59:3876–3879CrossRefGoogle Scholar
  25. Boccara N, Fukś H (1998) Cellular automaton rules conserving the number of active sites. J Phys A Math Gen 31:6007MathSciNetzbMATHCrossRefGoogle Scholar
  26. Boccara N, Fukś H (2002) Number-conserving cellular automaton rules. Fundam Inf 52(1–3):1–13MathSciNetzbMATHGoogle Scholar
  27. Boccara N, Roger M (1994) Some properties of local and nonlocal site exchange deterministic cellular automata. Int J Modern Phys C 5(03):581–588CrossRefGoogle Scholar
  28. Bohm D (1980) Wholeness and the implicate order, ISBN 0-203-99515-5. Routledge, AbingdonGoogle Scholar
  29. Bouré O, Fatès N, Chevrier V (2012) Probing robustness of cellular automata through variations of asynchronous updating. Nat Comput 11(4):553–564MathSciNetzbMATHCrossRefGoogle Scholar
  30. Burks C, Farmer D (1984) Towards modeling DNA sequences as automata. Phys D Nonlinear Phenom 10(1–2):157–167MathSciNetzbMATHCrossRefGoogle Scholar
  31. Capobianco S (2007) Surjectivity and surjunctivity of cellular automata in besicovitch topology. In: Proceedings of international workshop on cellular automata and discrete complex systems, AUTOMATA 2007Google Scholar
  32. Cattaneo G, Formenti E, Margara L, Mauri G (1999) On the dynamical behavior of chaotic cellular automata. Theor Comput Sci 217(1):31–51MathSciNetzbMATHCrossRefGoogle Scholar
  33. Cattaneo G, Finelli M, Margara L (2000) Investigating topological chaos by elementary cellular automata dynamics. Theor Comput Sci 244(1–2):219–241MathSciNetzbMATHCrossRefGoogle Scholar
  34. Cattaneo G, Dennunzio A, Margara L (2004) Solution of some conjectures about topological properties of linear cellular automata. Theor Comput Sci 325(2):249–271MathSciNetzbMATHCrossRefGoogle Scholar
  35. Cattaneo G, Dennunzio A, Formenti E, Provillard J (2009) Non-uniform cellular automata. In: Proceedings of 3rd international conference language and automata theory and applications, LATA, pp 302–313Google Scholar
  36. Cattell K, Muzio JC (1996) Synthesis of one-dimensional linear hybrid cellular automata. IEEE Trans Comput Aided Design Integr Circuits Syst 15(3):325–335zbMATHCrossRefGoogle Scholar
  37. Cattell K, Zhang S (1995) Minimal cost one-dimensional linear hybrid cellular automata of degree through 500. J Electron Test Theory Appl 6(2):255–258CrossRefGoogle Scholar
  38. Ceccherini-Silberstein TG, Machi A, Scarabotti F (1999) Amenable groups and cellular automata. Annales de l’institut Fourier 49(2):673–685MathSciNetzbMATHCrossRefGoogle Scholar
  39. Chakraborty R, Chowdhury DR (2009) A novel seed selection algorithm for test time reduction in BIST. In: Proceedings of the 18th Asian test symposium, ATS 2009, Taiwan, pp 15–20Google Scholar
  40. Chakraborty S, Chowdhury DR, Chaudhuri PP (1996) Theory and application of non-group cellular automata for synthesis of easily testable finite state machines. IEEE Trans Comput 45(7):769–781MathSciNetzbMATHCrossRefGoogle Scholar
  41. Chattopadhyay P, Choudhury PP, Dihidar K (1999) Characterisation of a particular hybrid transformation of two-dimensional cellular automata. Comput Math Appl 38(5–6):207–216MathSciNetzbMATHCrossRefGoogle Scholar
  42. Chattopadhyay S, Adhikari S, Sengupta S, Pal M (2000) Highly regular, modular, and cascadable design of cellular automata-based pattern classifier. IEEE Trans VLSI Syst 8(6):724–735CrossRefGoogle Scholar
  43. Chaudhuri PP, Chowdhury DR, Nandi S, Chatterjee S (1997) Additive cellular automata–theory and applications, ISBN 0-8186-7717-1, vol 1. IEEE Computer Society Press, Los AlamitosGoogle Scholar
  44. Cheybani S, Kertész J, Schreckenberg M (2000) Stochastic boundary conditions in the deterministic nagel-schreckenberg traffic model. Phys Rev E 63(016):107zbMATHGoogle Scholar
  45. Chopard B, Droz M (1998) Cellular automata modeling of physical systems. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  46. Chowdhury DR (1994) Theory and applications of additive cellular automata for reliable and testable VLSI circuit design. Ph.D. thesis, IIT, KharagpurGoogle Scholar
  47. Chowdhury DR, Chakraborty S, Vamsi B, Chaudhuri PP (1993) Cellular automata based synthesis of easily and fully testable FSMs. In: Proceedings of international conference on computer aided design, ICCAD, pp 650–653Google Scholar
  48. Chowdhury DR, Basu S, Gupta IS, Chaudhuri PP (1994) Design of CAECC—cellular automata based error correcting code. IEEE Trans Comput 43(6):759–764MathSciNetzbMATHCrossRefGoogle Scholar
  49. Cinkir Z, Akin H, Siap I (2011) Reversibilty of 1D cellular automata with periodic boundary over finite fields \( {{\mathbb{Z}}}_{p}\). J Stat Phys 143:807–823MathSciNetzbMATHCrossRefGoogle Scholar
  50. Codd EF (1968) Cellular automata. Academic Press Inc, CambridgezbMATHGoogle Scholar
  51. Codenotti B, Margara L (1996) Transitive cellular automata are sensitive. Am Math Mon 103(1):58–62MathSciNetzbMATHCrossRefGoogle Scholar
  52. Cole SN (1969) Real time computation by n-dimensional iterative arrays of finite state machines. IEEE Trans Comput C–18:55–77MathSciNetGoogle Scholar
  53. Comer JM, Cerda JC, Martinez CD, Hoe DH (2012) Random number generators using cellular automata implemented on FPGAs. In: Proceedings of 44th southeastern symposium on system theory (SSST), 2012, pp 67–72Google Scholar
  54. Cook M (2004) Universality in elementary cellular automata. Complex Syst 15(1):1–40MathSciNetzbMATHGoogle Scholar
  55. Cori R, Metivier Y, Zielonka W (1993) Asynchronous mappings and asynchronous cellular automata. Inf Comput 106(2):159–202MathSciNetzbMATHCrossRefGoogle Scholar
  56. Culik K (1987) On invertible cellular automata. Complex Syst 1(6):1035–1044MathSciNetzbMATHGoogle Scholar
  57. Culik K, Dube S (1991) An efficient solution to the firing mob problem. Theor Comput Sci 91:57–69MathSciNetzbMATHCrossRefGoogle Scholar
  58. Culik K, Yu S (1988) Undecidability of cellular automata classification schemes. Complex Syst 2:177–190zbMATHGoogle Scholar
  59. Culik K, Hard LP, Yu S (1990) Computation theoretic aspects of cellular automata. Physica D 45(1–3):357–378MathSciNetzbMATHCrossRefGoogle Scholar
  60. Darabos C, Giacobini M, Tomassini M (2007) Performance and robustness of cellular automata computation on irregular networks. Adv Complex Syst 10:85–110zbMATHCrossRefGoogle Scholar
  61. Das AK (1990) Additive cellular automata: theory and application as a built-in self-test structure. Ph.D. thesis, IIT, KharagpurGoogle Scholar
  62. Das AK, Chaudhuri PP (1989) An efficient on-chip deterministic test pattern generation scheme. Microprocess Microprogr 26:195–204CrossRefGoogle Scholar
  63. Das AK, Chaudhuri PP (1993) Vector space theoretic analysis of additive cellular automata and its applications for pseudo-exhaustive test pattern generation. IEEE Trans Comput 42(3):340–352MathSciNetCrossRefzbMATHGoogle Scholar
  64. Das AK, Ganguly A, Dasgupta A, Bhawmik S, Chaudhuri PP (1990a) Efficient characterisation of cellular automata. IEE Proc E Comput Digit Tech 137(1):81–87CrossRefGoogle Scholar
  65. Das AK, Saha D, Chowdhury AR, Misra S, Chaudhuri PP (1990b) Signature analyzer based on additive cellular automata. In: Proceedings of 20th fault tolerant computing systems, pp 265–272Google Scholar
  66. Das AK, Sanyal A, Chaudhuri PP (1992) On characterization of cellular automata with matrix algebra. Inf Sci 61(3):251–277MathSciNetzbMATHCrossRefGoogle Scholar
  67. Das S (2007) Theory and applications of nonlinear cellular automata in VLSI design. Ph.D. thesis, Bengal Engineering and Science University, ShibpurGoogle Scholar
  68. Das S (2011) Characterization of non-uniform number conserving cellular automata. In: Proceedings of international workshop on cellular automata and discrete complex systems, AUTOMATA 2011, Chile, pp 17–28Google Scholar
  69. Das S, Chowdhury DR (2011) Cryptographically suitable maximum length cellular automata. J Cell Autom 6(6):439–459MathSciNetzbMATHGoogle Scholar
  70. Das S, Chowdhury DR (2013) CAR30: a new scalable stream cipher with rule 30. Cryptogr Commun 5(2):137–162MathSciNetzbMATHCrossRefGoogle Scholar
  71. Das S, Sikdar BK (2008) Characterization of non-reachable states in irreversible ca state space. In: Proceedings of international conference on cellular automata, research and industry, ACRI 2008, Japan. Springer, Berlin, pp 160–167Google Scholar
  72. Das S, Sikdar BK (2009) Characterization of 1-D periodic boundary reversible ca. Electron Notes Theor Comput Sci 252:205–227MathSciNetzbMATHCrossRefGoogle Scholar
  73. Das S, Sikdar BK (2010) A scalable test structure for multicore chip. IEEE Trans CAD Integr Circuits Syst 29(1):127–137CrossRefGoogle Scholar
  74. Das S, Ganguly N, Sikdar BK, Chaudhuri PP (2003a) Design of a universal BIST (UBIST) structure. In: Proceedings of 16th international conference on VLSI design, pp 161–166Google Scholar
  75. Das S, Kundu A, Sen S, Sikdar BK, Chaudhuri PP (2003b) Non-linear celluar automata based PRPG design (without prohibited pattern set) in linear time complexity. In: Proceedings of Asian test symposium, pp 78–83Google Scholar
  76. Das S, Sikdar BK, Chaudhuri PP (2004) Characterization of reachable/nonreachable cellular automata states. In: Proceedings of internationl conference on cellular automata, research and industry, ACRI 2004, Netherlands. Springer, Berlin, pp 813–822Google Scholar
  77. Das S, Mukherjee S, Naskar N, Sikdar BK (2009) Characterization of single cycle ca and its application in pattern classification. Electron Notes Theor Comput Sci 252:181–203MathSciNetzbMATHCrossRefGoogle Scholar
  78. Das S, Sarkar A, Sikdar BK (2012) Synthesis of reversible asynchronous cellular automata for pattern generation with specific hamming distance. In: Proceedings of international conference on cellular automata, research and industry, ACRI 2012, Greece. Springer, Berlin, pp 643–652Google Scholar
  79. Delorme M, Mazoyer J, Tougne L (1999) Discrete parabolas and circles on 2D cellular automata. Theor Comput Sci 218(2):347–417zbMATHCrossRefGoogle Scholar
  80. Dennunzio A, Lena PD, Formenti E, Margara L (2009) On the directional dynamics of additive cellular automata. Theor Comput Sci 410(47):4823–4833MathSciNetzbMATHCrossRefGoogle Scholar
  81. Dennunzio A, Formenti E, Manzoni L (2012a) Computing issues of asynchronous CA. Fundam Inf 120(2):165–180MathSciNetzbMATHGoogle Scholar
  82. Dennunzio A, Formenti E, Provillard J (2012b) Non-uniform cellular automata: classes, dynamics, and decidability. Inf Comput 215:32–46MathSciNetzbMATHCrossRefGoogle Scholar
  83. Dennunzio A, Di Lena P, Formenti E, Margara L (2013a) Periodic orbits and dynamical complexity in cellular automata. Fundam Inform 126(2–3):183–199MathSciNetzbMATHGoogle Scholar
  84. Dennunzio A, Formenti E, Manzoni L, Mauri G (2013b) m-asynchronous cellular automata: from fairness to quasi-fairness. Nat Comput 12(4):561–572MathSciNetzbMATHCrossRefGoogle Scholar
  85. Dennunzio A, Formenti E, Provillard J (2013c) Local rule distributions, language complexity and non-uniform cellular automata. Theor Comput Sci 504:38–51MathSciNetzbMATHCrossRefGoogle Scholar
  86. Dennunzio A, Formenti E, Provillard J (2014a) Three research directions in non-uniform cellular automata. Theor Comput Sci 559:73–90MathSciNetzbMATHCrossRefGoogle Scholar
  87. Dennunzio A, Formenti E, Weiss M (2014b) Multidimensional cellular automata: closing property, quasi-expansivity, and (un)decidability issues. Theor Comput Sci 516:40–59MathSciNetzbMATHCrossRefGoogle Scholar
  88. de Oliveira GMB, Siqueira SRC (2006) Parameter characterization of two-dimensional cellular automata rule space. Physica D 217(1):1–6MathSciNetzbMATHCrossRefGoogle Scholar
  89. de Oliveira PPB (2013) Conceptual connections around density determination in cellular automata. In: Proceedings of international workshop on cellular automata and discrete complex systems, AUTOMATA 2013, Germany, pp 1–14Google Scholar
  90. Devaney RL (1986) An introduction to chaotic dynamical systems. Addison Wesley, BostonzbMATHGoogle Scholar
  91. Di Gregorio S, Trautteur G (1975) On reversibility in cellular automata. J Comput Syst Sci 11(3):382–391MathSciNetzbMATHCrossRefGoogle Scholar
  92. Domosi P, Nehaniv CL (2005) Algebraic theory of automata networks: an introduction. SIAM monographs on discrete mathematics and applications. Society for Industrial and Applied Mathematics, PhiladelphiazbMATHCrossRefGoogle Scholar
  93. Droste M, Gastin P, Kuske D (2000) Asynchronous cellular automata for pomsets. Theor Comput Sci 247(1–2):1–38MathSciNetzbMATHCrossRefGoogle Scholar
  94. Dubacq JC (1995) How to simulate turing machines by invertible one-dimensional cellular automata. Int J Found Comput Sci 6(4):395–402zbMATHCrossRefGoogle Scholar
  95. Durand B (1993) Global properties of 2d cellular automata: Some complexity results. In: Proceedings of 18th international symposium, MFCS’93, Poland. Springer, Berlin, pp 433–441Google Scholar
  96. Durand B, Formenti E, Róka Z (2003a) Number-conserving cellular automata i: decidability. Theor Comput Sci 299(1–3):523–535MathSciNetzbMATHCrossRefGoogle Scholar
  97. Durand B, Formenti E, Varouchas G (2003b) On undecidability of equicontinuity classification for cellular automata. Discrete Math Theor Comput Sci 3:117–128MathSciNetzbMATHGoogle Scholar
  98. Durand-Lose JO (1998) About the universality of the billiard ball model. In: Proceedings international colloquium universal machines and computations, MCU’98, France, pp 118–132Google Scholar
  99. Dyer C (1980) One-way bounded cellular automata. Inf Control 44:261–281MathSciNetzbMATHCrossRefGoogle Scholar
  100. Ermentrout GB, Edelstein-Keshet L (1993) Cellular automata approaches to biological modeling. J Theor Biol 160(1):97–133CrossRefGoogle Scholar
  101. Fatès N (2013) Stochastic cellular automata solutions to the density classification problem—when randomness helps computing. Theory Comput Syst 53(2):223–242MathSciNetzbMATHCrossRefGoogle Scholar
  102. Fatès N (2014) Guided tour of asynchronous cellular automata. J Cell Autom 9(5–6):387–416MathSciNetzbMATHGoogle Scholar
  103. Fatés N (2017) FiatLux: cellular automata and discrete complex systems simulator. Accessed Aug 25, 2017
  104. Fatès N, Thierry E, Morvan M, Schabanel N (2006) Fully asynchronous behavior of double-quiescent elementary cellular automata. Theor Comput Sci 362(1–3):1–16MathSciNetzbMATHCrossRefGoogle Scholar
  105. Finelli M, Manzini G, Margara L (1998) Lyapunov exponents versus expansivity and sensitivity in cellular automata. J Complex 14(2):210–233MathSciNetzbMATHCrossRefGoogle Scholar
  106. Fischer PC (1965) Generation of primes by a one-dimensional real-time iterative array. J ACM 12:388–394MathSciNetzbMATHCrossRefGoogle Scholar
  107. Formenti E, Grange A (2003) Number conserving cellular automata ii: dynamics. Theor Comput Sci 304:269–290MathSciNetzbMATHCrossRefGoogle Scholar
  108. Formenti E, Imai K, Martin B, Yunès JB (2014) Advances on random sequence generation by uniform cellular automata. In: Calude CS, Freivalds R, Kazuo I (eds) Computing with new resources: essays dedicated to jozef gruska on the occasion of his 80th birthday. Springer, Cham, pp 56–70CrossRefGoogle Scholar
  109. Fredkin E, Toffoli T (1982) Conservative logic. Int J Theor Phys 21:219–253MathSciNetzbMATHCrossRefGoogle Scholar
  110. Frisch U, Hasslacher B, Pomeau Y (1986) Lattice gas automata for the Navier–Stokes equation. Phys Rev Lett 56(14):1505–1508CrossRefGoogle Scholar
  111. Fukś H (1997) Solution of the density classification problem with two cellular automata rules. Phys Rev E 55:R2081–R2084CrossRefGoogle Scholar
  112. Fukś H (2004) Probabilistic cellular automata with conserved quantities. Nonlinearity 17(1):159MathSciNetzbMATHCrossRefGoogle Scholar
  113. Gandin CA, Rappaz M (1997) A 3D cellular automaton algorithm for the prediction of dendritic grain growth. Acta Mater 45(5):2187–2195CrossRefGoogle Scholar
  114. Ganguly N, Halder D, Deb J, Sikdar BK, Chaudhuri PP (2000) Hashing through cellular automata. In: Proceedings of 8th international conference of advance computing and communication, pp 95–101Google Scholar
  115. Ganguly N, Maji P, Dhar S, Sikdar BK, Chaudhuri PP (2002a) Evolving cellular automata as pattern classifier. In: Proceedings of international conference on cellular automata, research and industry, ACRI 2002, Switzerland. Springer, Berlin, pp 56–68Google Scholar
  116. Ganguly N, Maji P, Sikdar BK, Chaudhuri PP (2002b) Generalized multiple attractor cellular automata (GMACA) For associative memory. Int J of Pattern Recognit Artif Intell 16(7):781–795 (Special Issue: Computational Intelligence for Pattern Recognition)CrossRefGoogle Scholar
  117. Ganguly N, Sikdar BK, Chaudhuri PP (2002c) Design of an on-chip test pattern generator without prohibitited pattern set (PPS). In: Proceedings of ASP-DAC/VLSI design 2002, India, pp 689–694Google Scholar
  118. Ganguly N, Sikdar BK, Chaudhuri PP (2008) Exploring cycle structures of additive cellular automata. Fundam Inf 87(2):137–154MathSciNetzbMATHGoogle Scholar
  119. Gardner M (1971) On cellular automata self-reproduction, the garden of eden and the game of ‘Life’. Sci Am 224(2):112–118CrossRefGoogle Scholar
  120. Ghosh S, Laskar N, Mahapatra S, Chaudhuri PP (2007) Probabilistic cellular automata model for identification of cpg island in DNA string. In: Proceedings of Indian international conference on artificial intelligence (IICAI), pp 1490–1509Google Scholar
  121. Ghosh S, Bachhar T, Maiti NS, Mitra I, Chaudhuri PP (2010) Theory and application of equal length cycle cellular automata (ELCCA) for enzyme classification. In: Proceedings of international conference on cellular automata, research and industry, ACRI 2010, Italy, pp 46–57Google Scholar
  122. Ghosh S, Maiti NS, Chaudhuri PP, Sikdar BK (2011) On invertible three neighborhood null-boundary uniform cellular automata. Complex Syst 20:47–65MathSciNetzbMATHGoogle Scholar
  123. Ghosh S, Maiti NS, Chaudhuri PP (2012) Theory and application of restricted five neighborhood cellular automata (r5nca) for protein structure prediction. In: Proceedings of international conference on cellular automata, research and industry, ACRI 2012, Greece. Springer, Berlin, pp 360–369Google Scholar
  124. Ghosh S, Maiti NS, Chaudhuri PP (2014) Cellular automata model for protein structure synthesis (PSS). In: Proceedings of international conference on cellular automata, research and industry, ACRI 2014, Poland, pp 268–277Google Scholar
  125. Goles E, Moreira A, Rapaport I (2011) Communication complexity in number-conserving and monotone cellular automata. Theor Comput Sci 412(29):3616–3628MathSciNetzbMATHCrossRefGoogle Scholar
  126. Golze U (1978) (a-)synchronous (non-)deterministic cell spaces simulating each other. J Comput Syst Sci 17(2):176–193MathSciNetzbMATHCrossRefGoogle Scholar
  127. Golze U, Priese L (1982) Petri net implementations by a universal cell space. Inf Control 53(1–2):121–138MathSciNetzbMATHCrossRefGoogle Scholar
  128. Grinstein G, Jayaprakash C, He Y (1985) Statistical mechanics of probabilistic cellular automata. Phys Rev Lett 55:2527–2530MathSciNetCrossRefGoogle Scholar
  129. Guan S, Tan SK (2004) Pseudorandom number generation with self-programmable cellular automata. IEEE Trans CAD 23(7):1095–1101CrossRefGoogle Scholar
  130. Guan S, Zhang S (2003) An evolutionary approach to the design of controllable cellular automata structure for random number generation. IEEE Trans CAD 7(1):23–36Google Scholar
  131. Hattori T, Takesue S (1991) Additive conserved quantities in discrete-time lattice dynamical systems. Physica D 49(3):295–322MathSciNetzbMATHCrossRefGoogle Scholar
  132. Hazari R, Das S (2014) Number conservation property of elementary cellular automata under asynchronous update. Complex Syst 23:177–195MathSciNetzbMATHGoogle Scholar
  133. Hedlund GA (1969) Endomorphisms and automorphisms of the shift dynamical system. Mathe Syst Theory 3:320–375MathSciNetzbMATHCrossRefGoogle Scholar
  134. Hemmerling A (1982) On the computational equivalence of synchronous and asynchronous cellular spaces. Elektronische Informationsverarbeitung und Kybernetik 18(7/8):423–434MathSciNetzbMATHGoogle Scholar
  135. Herman GT, Liu WH (1973) The daughter of celia, the french flag, and the firing squad. SIMULATION 21(2):33–41CrossRefGoogle Scholar
  136. Hortensius PD, McLeod RD, Card HC (1989a) Parallel random number generation for VLSI systems using cellular automata. IEEE Trans Comput C–38(10):1466–1473CrossRefGoogle Scholar
  137. Hortensius PD, McLeod RD, Pries W, Miller DM, Card HC (1989b) Cellular automata-based pseudorandom number generators for built-in self-test. IEEE Trans Comput Aided Design Integr Circuits Syst 8(8):842–859CrossRefGoogle Scholar
  138. Hortensius PD, McLeod RD, Card HC (1990) Cellular automata based signature analysis for built-in self-test. IEEE Trans Comput C–39(10):1273–1283CrossRefGoogle Scholar
  139. Imai K, Morita K (2000) A computation-universal two-dimensional 8-state triangular reversible cellular automaton. Theor Comput Sci 231(2):181–191MathSciNetzbMATHCrossRefGoogle Scholar
  140. Ingerson TE, Buvel RL (1984) Structure in asynchronous cellular automata. Physica D 10(1–2):59–68MathSciNetCrossRefGoogle Scholar
  141. Itô M, Ôsato N, Nasu M (1983) Linear cellular automata over \({{\mathbb{Z}}}_m\). J Comput Syst Sci 27(1):125–140zbMATHCrossRefGoogle Scholar
  142. Jen E (1986) Invariant strings and pattern-recognizing properties of one-dimensional cellular automata. J Stat Phys 43(1):243–265MathSciNetCrossRefGoogle Scholar
  143. Jin J, Wu ZH (2012) A secret image sharing based on neighborhood configurations of 2-D cellular automata. Optics Laser Technol 44(3):538–548CrossRefGoogle Scholar
  144. Jump JR, Kirtane JS (1974) On the interconnection structure of cellular automata networks. Inf Control 24:74–91zbMATHCrossRefGoogle Scholar
  145. Kari J (1990) Reversibility of 2D cellular automata is undecidable. Physica D 45:386–395MathSciNetzbMATHCrossRefGoogle Scholar
  146. Kari J (1992) The nilpotency problem of one-dimensional cellular automata. SIAM J Comput 21(3):571–586MathSciNetzbMATHCrossRefGoogle Scholar
  147. Kari J (1994) Reversibility and surjectivity problems of cellular automata. J Comput Syst Sci 48(1):149–182MathSciNetzbMATHCrossRefGoogle Scholar
  148. Kari J (2005a) Reversible cellular automata. Springer, Berlin, pp 57–68zbMATHGoogle Scholar
  149. Kari J (2005b) Theory of cellular automata: a survey. Theor Comput Sci 334(1–3):3–33MathSciNetzbMATHCrossRefGoogle Scholar
  150. Kari J, Le Gloannec B (2012) Modified traffic cellular automaton for the density classification task. Fundam Inf 116(1–4):141–156MathSciNetzbMATHGoogle Scholar
  151. Kayama Y (2012) Network view of binary cellular automata. In: Proceedings of international conference on cellular automata, research and industry, ACRI 2012, Greece. Springer, Berlin, pp 224–233Google Scholar
  152. Kayama Y, Imamura Y (2011) Network representation of the game of life. J Artif Intell Soft Comput Res 1(3):233–240Google Scholar
  153. Kazar O, Slatnia S (2011) Evolutionary cellular automata for image segmentation and noise filtering using genetic algorithms. J Appl Comput Sci Math 5(10):33–40Google Scholar
  154. Kerner BS (2004) Three-phase traffic theory and highway capacity. Physica A 333(C):379–440MathSciNetCrossRefGoogle Scholar
  155. Khan AR (1998) Replacement of some graphics routines with the help of 2D cellular automata algorithms for faster graphics operations. Ph.D. thesis, University of KashmirGoogle Scholar
  156. Kohyama T (1989) Cellular automata with particle conservation. Progress Theoret Phys 81(1):47–59MathSciNetCrossRefGoogle Scholar
  157. Kohyama T (1991) Cluster growth in particle-conserving cellular automata. J Stat Phys 63(3–4):637–651MathSciNetCrossRefGoogle Scholar
  158. Kurka P (1997) Languages, equicontinuity and attractors in cellular automata. Ergod Theory Dyn Syst 17(02):417–433MathSciNetzbMATHCrossRefGoogle Scholar
  159. Kurka P (2003) Cellular automata with vanishing particles. Fundam Inf 58(2003):203–221MathSciNetGoogle Scholar
  160. Lafe O (1997) Data compression and encryption using cellular automata transforms. Eng Appl Artif Intell 10(6):581–591CrossRefGoogle Scholar
  161. Lafe OE (2002) Method and apparatus for video compression using sequential frame cellular automata transforms. US Patent 6,456,744Google Scholar
  162. Land M, Belew RK (1995) No perfect two-state cellular automata for density classification exists. Phys Rev Lett 74:5148–5150CrossRefGoogle Scholar
  163. Langton CG (1990) Computation at the edge of chaos. Physica D 42:12–37MathSciNetCrossRefGoogle Scholar
  164. Le Caër G (1989) Comparison between simultaneous and sequential updating in \(2^{n+1}-1\) cellular automata. Physica A 157(2):669–687MathSciNetzbMATHCrossRefGoogle Scholar
  165. Legendi T, Katona E (1981) A 5 state solution of the early bird problem in a one dimensional cellular space. Acta Cybern 5(2):173–179MathSciNetzbMATHGoogle Scholar
  166. Legendi T, Katona E (1986) A solution of the early bird problem in an n-dimensional cellular space. Acta Cybern 7(1):81–87MathSciNetzbMATHGoogle Scholar
  167. Leporati A, Mariot L (2014) Cryptographic properties of bipermutive cellular automata rules. J Cell Autom 9:437–475MathSciNetzbMATHGoogle Scholar
  168. Li J, Demaine E, Gymrek M (2010) Es.268 the mathematics in toys and games, spring 2010. (massachusetts institute of technology: Mit opencourseware). Accessed
  169. Li W, Packard NH, Langton CG (1990) Transition phenomena in cellular automata rule space. Physica D 45:77–94MathSciNetzbMATHCrossRefGoogle Scholar
  170. Lindgren K, Nordahl MG (1990) Universal computation in simple one-dimensional cellular automata. Complex Syst 4(3):299–318MathSciNetzbMATHGoogle Scholar
  171. Machì A, Mignosi F (1993) Garden of eden configurations for cellular automata on cayley graphs of groups. SIAM J Discrete Math 6(1):44–56MathSciNetzbMATHCrossRefGoogle Scholar
  172. Maiti NS, Munshi S, Chaudhuri PP (2006) An analytical formulation for cellular automata (CA) based solution of density classification task (DCT). In: Proceedings of international conference on cellular automata, research and industry, ACRI 2006. Springer, pp 147–156Google Scholar
  173. Maiti NS, Ghosh S, Munshi S, Chaudhuri PP (2010) Linear time algorithm for identifying the invertibility of null-boundary three neighborhood cellular automata. Complex Syst 19(1):89–113MathSciNetzbMATHGoogle Scholar
  174. Maji P (2005) Cellular automata evolution for pattern recognition. Ph.D. thesis, Jadavpur University, KolkataGoogle Scholar
  175. Maji P, Chaudhuri PP (2004) Fmaca: A fuzzy cellular automata based pattern classifier. In: Proceedings of 9th international conference on database systems for advanced applications, DASFAA 2004. Springer, Berlin, pp 494–505Google Scholar
  176. Maji P, Chaudhuri PP (2005) Fuzzy cellular automata for modeling pattern classifier. IEICE Trans Inf Syst E88–D(4):691–702CrossRefGoogle Scholar
  177. Maji P, Ganguly N, Chaudhuri PP (2003a) Error correcting capability of cellular automata based associative memory. IEEE Trans Syst Man Cybern A 33(4):466–480CrossRefGoogle Scholar
  178. Maji P, Shaw C, Ganguly N, Sikdar BK, Chaudhuri PP (2003b) Theory and application of cellular automata for pattern classification. Fundam Inf Cell Autom 58(3):321–354 (special issue)MathSciNetzbMATHGoogle Scholar
  179. Manning FB (1977) An approach to highly integrated, computer-maintained cellular arrays. IEEE Trans Comput C–26:536–552CrossRefGoogle Scholar
  180. Manzoni L (2012) Asynchronous cellular automata and dynamical properties. Nat Comput 11(2):269–276MathSciNetzbMATHCrossRefGoogle Scholar
  181. Manzoni L, Umeo H (2014) The firing squad synchronization problem on ca with multiple updating cycles. Theor Comput Sci 559:108–117 (non-uniform Cellular Automata)MathSciNetzbMATHCrossRefGoogle Scholar
  182. Margenstern M (2009) About the garden of eden theorems for cellular automata in the hyperbolic plane. Electron Notes Theor Comput Sci 252:93–102MathSciNetzbMATHCrossRefGoogle Scholar
  183. Margenstern M, Morita K (1999) A polynomial solution for 3-sat in the space of cellular automata in the hyperbolic plane. J Univ Comput Sci 5(9):563–573MathSciNetzbMATHGoogle Scholar
  184. Margenstern M, Morita K (2001) Np problems are tractable in the space of cellular automata in the hyperbolic plane. Theor Comput Sci 259(1–2):99–128MathSciNetzbMATHCrossRefGoogle Scholar
  185. Margolus N (1984) Physics-like models of computation. Physica D 10(1–2):81–95MathSciNetzbMATHCrossRefGoogle Scholar
  186. Mariot L (2016) Asynchrony immune cellular automata. In: Proceedings of international conference on cellular automata, research and industry, ACRI 2016, Morocco. Springer, Cham, pp 176–181Google Scholar
  187. Mariot L, Leporati A, Dennunzio A, Formenti E (2017) Computing the periods of preimages in surjective cellular automata. Nat Comput 16(3):367–381MathSciNetCrossRefGoogle Scholar
  188. Marr C, Hütt MT (2009) Outer-totalistic cellular automata on graphs. Phys Lett A 373(5):546–549zbMATHCrossRefGoogle Scholar
  189. Martin B (1994) A universal cellular automata in quasi-linear time and its s-m-n form. Theor Comput Sci 123(2):199–237zbMATHCrossRefGoogle Scholar
  190. Martin O, Odlyzko AM, Wolfram S (1984) Algebraic properties of cellular automata. Commun Math Phys 93:219–258MathSciNetzbMATHCrossRefGoogle Scholar
  191. Martinez GJ, McIntosh HV, Mora JCST, Vergara SVC (2008) Determining a regular language by glider-based structures called phases \(f_{i}\_1\) in rule 110. J Cell Autom 3(3):231–270 (special issues)MathSciNetzbMATHGoogle Scholar
  192. Maruoka A, Kimura M (1976) Condition for injectivity of global maps for tessellation automata. Inf Control 32(2):158–162MathSciNetzbMATHCrossRefGoogle Scholar
  193. Maruoka A, Kimura M (1979) Injectivity and surjectivity of parallel maps for cellular automata. J Comput Syst Sci 18(1):47–64MathSciNetzbMATHCrossRefGoogle Scholar
  194. Matsukidaira J, Nishinari K (2003) Euler–Lagrange correspondence of cellular automaton for traffic-flow models. Phys Rev Lett 90:088,701(1–4)CrossRefGoogle Scholar
  195. Mazoyer J, Nichitiu C, Rémila E (1999) Compass permits leader election. In: Proceedings of the 10th annual ACM-SIAM symposium on discrete algorithms, society for industrial and applied mathematics, SODA’99, pp 947–948Google Scholar
  196. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133MathSciNetzbMATHCrossRefGoogle Scholar
  197. Miller DB, Fredkin E (2005) Two-state, reversible, universal cellular automata in three dimensions. In: Proceedings of the 2nd conference on computing frontiers. ACM, pp 45–51Google Scholar
  198. Misra S, Mitra B, Chaudhuri PP (1992) Synthesis of self-testable sequential logic using programmable cellular automata. In: Proceedings of international conference on VLSI design, pp 193–198Google Scholar
  199. Mitchell M, Hraber PT, Crutchfield JP (1993) Revisiting the edge of chaos: evolving cellular automata to perform computations. Complex Syst 7:89–130zbMATHGoogle Scholar
  200. Mitra B, Panda PR, Chaudhuri PP (1991) A flexible scheme for state assignment based on characteristics of the FSM. In: Proceedings of international conference on computer aided design, ICCAD, California, pp 226–229Google Scholar
  201. Mitra S, Das S, Chaudhuri PP, Nandi S (1996) Architecture of a VLSI chip for modeling amino acid sequence in proteins. In: Proceedings of 9th international conference on VLSI design, 1996, pp 316–317Google Scholar
  202. Mo Y, Ren B, Yang W, Shuai J (2014) The 3-dimensional cellular automata for hiv infection. Physica A 399:31–39MathSciNetCrossRefzbMATHGoogle Scholar
  203. Moore EF (1962) Machine models of self-reproduction. Proc Symp Appl Math 14:17–33zbMATHCrossRefGoogle Scholar
  204. Mora JCST, Martínez GJ, McIntosh HV (2006) The inverse behavior of a reversible one-dimensional cellular automaton obtained by a single welch diagram. J Cell Autom 1(1):25–39MathSciNetzbMATHGoogle Scholar
  205. Mora JCST, Hernandez MG, Vergara SVC (2008) Pair diagram and cyclic properties characterizing the inverse of reversible automata. J Cell Autom 3(3):205–218 (special Issue)MathSciNetzbMATHGoogle Scholar
  206. Moraal H (2000) Graph-theoretical characterization of invertible cellular automata. Physica D 141(1):1–18MathSciNetzbMATHCrossRefGoogle Scholar
  207. Morales FJ, Crutchfield JP, Mitchell M (2001) Evolving two-dimensional cellular automata to perform density classification: a report on work in progress. Parallel Comput 27:571–585zbMATHCrossRefGoogle Scholar
  208. Moreira A (2003) Universality and decidability of number-conserving cellular automata. Theor Comput Sci 292(3):711–721MathSciNetzbMATHCrossRefGoogle Scholar
  209. Moreira J, Deutsch A (2002) Cellular automaton models of tumor development: a critical review. Adv Complex Syst 05(02n03):247–267MathSciNetzbMATHCrossRefGoogle Scholar
  210. Moreno JL, Whitin ES, Jennings HH (1932) Application of the group method to classification. National Committee on Prisons and Prison Labor, New York (reprinted in The first book on group pyschotherapy, 3d edn, 1957, pp. 3–103)Google Scholar
  211. Morita K (1995) Reversible simulation of one-dimensional irreversible cellular automata. Theor Comput Sci 148(1):157–163MathSciNetzbMATHCrossRefGoogle Scholar
  212. Morita K (2008) Reversible computing and cellular automata–a survey. Theor Comput Sci 395(1):101–131MathSciNetzbMATHCrossRefGoogle Scholar
  213. Morita K (2016) Universality of 8-state reversible and conservative triangular partitioned cellular automata. In: International conference on cellular automata. Springer, pp 45–54Google Scholar
  214. Morita K, Harao M (1989) Computation universality of one dimensional reversible injective cellular automata. IEICE Trans E 72:758–762Google Scholar
  215. Morita K, Imai K (1998) Number-conserving reversible cellular automata and their computation-universality. In: Proceedings of satellite workshop on cellular automata MFCS’98, pp 51–68Google Scholar
  216. Morita K, Margenstern M, Imai K (1999) Universality of reversible hexagonal cellular automata. RAIRO Theor Inf Appl 33(6):535–550MathSciNetzbMATHCrossRefGoogle Scholar
  217. Morita K, Tojima Y, Imai K (1999) A simple computer embedded in a reversible and number conserving two-dimensional cellular space. In: Proceedings of LA Symposium’99, HakoneGoogle Scholar
  218. Myhill J (1963) The converse of moore’s garden of eden theorem. Proc Am Math Soc 14:685–686MathSciNetzbMATHGoogle Scholar
  219. Nagel K (1996) Particle hopping models and traffic flow theory. Phys Rev E 53:4655–4672CrossRefGoogle Scholar
  220. Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J Phys I 2(12):2221–2229Google Scholar
  221. Nakamura K (1974) Asynchronous cellular automata and their computational ability. Syst Comput Controls 5(5):58–66MathSciNetGoogle Scholar
  222. Nakamura K (1981) Synchronous to asynchronous transformation of polyautomata. J Comput Syst Sci 23(1):22–37MathSciNetzbMATHCrossRefGoogle Scholar
  223. Nandi S, Chaudhuri PP (1996) Analysis of periodic and intermediate boundary 90/150 cellular automata. IEEE Trans Comput 45(1):1–12MathSciNetzbMATHCrossRefGoogle Scholar
  224. Nandi S, Kar BK, Chaudhuri PP (1994) Theory and application of cellular automata in cryptography. IEEE Trans Comput 43(12):346–357MathSciNetCrossRefGoogle Scholar
  225. Naskar N (2015) Characterization and synthesis of non-uniform cellular automata with point state attractors. Ph.D. thesis, Indian Institute of Engineering Science and Technology, ShibpurGoogle Scholar
  226. Neumann JV (1966) Theory of self-reproducing automata. University of Illinois Press, ChampaignGoogle Scholar
  227. Newman MEJ, Watts DJ (1999) Scaling and percolation in the small-world network model. Phys Rev E 60(6):7332–7342CrossRefGoogle Scholar
  228. Nishio H (1981) Real time sorting of binary numbers by one-dimensional cellular automata. Technical report, Kyoto UniversityGoogle Scholar
  229. Nishio H, Kobuchi Y (1975) Fault tolerant cellular space. J Comput Syst Sci 11:150–170MathSciNetzbMATHCrossRefGoogle Scholar
  230. Noguchi K (2004) Simple 8-state minimal time solution to the firing squad synchronization problem. Theor Comput Sci 314(3):303–334MathSciNetzbMATHCrossRefGoogle Scholar
  231. Ollinger N (2002) The quest for small universal cellular automata. In: Proceedings of 29th international colloquium automata, languages and programming, ICALP 2002, Spain. Springer, Berlin, pp 318–329Google Scholar
  232. Ollinger N (2003) The intrinsic universality problem of one-dimensional cellular automata. In: Proceedings of international symposium on theoretical aspects of computer science, STACS 2003. Springer, pp 632–641Google Scholar
  233. Ollinger N, Richard G (2011) Four states are enough. Theor Comput Sci 412:22–32MathSciNetzbMATHCrossRefGoogle Scholar
  234. Packard NH, Wolfram S (1985) Two-dimensional cellular automata. J Stat Phys 38(5/6):901–946MathSciNetzbMATHCrossRefGoogle Scholar
  235. Paul K, Chowdhury DR (2000) Application of GF(2\(^p\)) CA in burst error correcting codes. In: Proceedings of international conference of VLSI design, pp 562–567Google Scholar
  236. Paul K, Chowdhury DR, Chaudhuri PP (1999) Cellular automata based transform coding for image compression. In: Proceedings of international conference on high performance computing (HiPC), pp 269–273Google Scholar
  237. Paul K, Chowdhury DR, Chaudhuri PP (2000) Scalable pipelined micro-architecture for wavelet transform. In: Proceedings of international conference on VLSI design, pp 144–147Google Scholar
  238. Pighizzini G (1994) Asynchronous automata versus asynchronous cellular automata. Theor Comput Sci 132(1–2):179–207MathSciNetzbMATHCrossRefGoogle Scholar
  239. Pivato M (2002) Conservation laws in cellular automata. Nonlinearity 15(6):1781MathSciNetzbMATHCrossRefGoogle Scholar
  240. Pries W, Thanailakis A, Card HC (1986) Group properties of cellular automata and VLSI applications. IEEE Trans Comput C–35(12):1013–1024zbMATHCrossRefGoogle Scholar
  241. Provillard J, Formenti E, Dennunzio A (2011) Non-uniform cellular automata and distributions of rules. arXiv preprint arXiv:11081419
  242. Raghavan R (1993) Cellular automata in pattern recognition. Inf Sci 70:145–177CrossRefGoogle Scholar
  243. Martın del Rey A, Rodrıguez Sınchez G (2011) Reversibility of linear cellular automata. Appl Math Comput 217(21):8360–8366MathSciNetzbMATHGoogle Scholar
  244. Richardson D (1972) Tessellations with local transformations. J Comput Syst Sci 6:373–388MathSciNetzbMATHCrossRefGoogle Scholar
  245. Roncken M, Stevens K, Pendurkar R, Rotem S, Chaudhuri PP (2000) Ca-bist for asynchronous circuits: a case study on the rappid asynchronous instruction length decoder. In: Proceedings of advanced research in asynchronous circuits and systems (ASYNC 2000), pp 62–72Google Scholar
  246. Rosenstiehl P, Fiksel JR, Holliger A (1972) Intelligent graphs: networks of finite automata capable of solving graph problems. In: Read RC (ed) Graph theory and computing. Academic press, New York, pp 219–265CrossRefzbMATHGoogle Scholar
  247. Rosin PL (2006) Training cellular automata for image processing. Trans Imge Process 15(7):2076–2087CrossRefGoogle Scholar
  248. Rosin PL (2010) Image processing using 3-state cellular automata. Comput Vis Image Underst 114(7):790–802CrossRefGoogle Scholar
  249. Roy S, Das S (2017) Distributed mutual exclusion problem in cellular automata. J Cell Autom 12(6):493–512MathSciNetGoogle Scholar
  250. Ruxton G, Saravia LA (1998) The need for biological realism in the updating of cellular automata models. Ecol Model 107(2–3):105–112CrossRefGoogle Scholar
  251. Sadeghi S, Rezvanian A, Kamrani E (2012) An efficient method for impulse noise reduction from images using fuzzy cellular automata. AEU Int J Electron Commun 66(9):772–779CrossRefGoogle Scholar
  252. Salo V (2014) Realization problems for nonuniform cellular automata. Theor Comput Sci 559:91–107MathSciNetzbMATHCrossRefGoogle Scholar
  253. Santos J, Villot P, Diéguez M (2013) Protein folding with cellular automata in the 3d hp model. In: Proceedings of the 15th annual conference companion on genetic and evolutionary computation, GECCO’13, pp 1595–1602Google Scholar
  254. dos Santos RMZ, Coutinho S (2001) Dynamics of HIV approach: a cellular automata approach. Phys Rev Lett 87:168,102CrossRefGoogle Scholar
  255. Saraniti M, Goodnick SM (2000) Hybrid fullband cellular automaton/monte carlo approach for fast simulation of charge transport in semiconductors. IEEE Trans Electron Devices 47(10):1909–1916CrossRefGoogle Scholar
  256. Sarkar A, Mukherjee A, Das S (2012) Reversibility in asynchronous cellular automata. Complex Syst 21(1):71MathSciNetGoogle Scholar
  257. Sarkar P (2000) A brief history of cellular automata. ACM Comput Surv 32(1):80–107CrossRefGoogle Scholar
  258. Sarkar P, Barua R (1998) Multi-dimensional \(\sigma \)-automata, \(\pi \)-polynomial and generalized \(s\)-matrices. Theor Comput Sci 197(1–2):111–138zbMATHCrossRefGoogle Scholar
  259. Sato T, Honda N (1977) Certain relations between properties of maps of tessellation automata. J Comput Syst Sci 15(2):121–145MathSciNetzbMATHCrossRefGoogle Scholar
  260. Seredynski F, Bouvry P, Zomaya AY (2004) Cellular automata computations and secret key cryptography. Parallel Comput 30(5–6):753–766MathSciNetzbMATHCrossRefGoogle Scholar
  261. Seredynski M, Bouvry P (2005) Block cipher based on reversible cellular automata. New Gener Comput 23(3):245–258zbMATHCrossRefGoogle Scholar
  262. Serra M, Slater T, Muzio JC, Miller DM (1990) The analysis of one-dimensional linear cellular automata and their aliasing properties. IEEE Trans CAD 9(7):767–778CrossRefGoogle Scholar
  263. Sethi B, Das S (2015) Convergence of asynchronous cellular automata (under null boundary condition) and their application in pattern classification. In: Recent advances in natural computing: selected results from the IWNC 7 symposium, Springer Japan, pp 35–55Google Scholar
  264. Sethi B, Das S (2016) On the use of asynchronous cellular automata in symmetric-key cryptography. In: Mueller P, Thampi SM, Alam Bhuiyan MZ, Ko R, Doss R, Alcaraz Calero JM (eds) Security in computing and communications: 4th international symposium, SSCC 2016, Jaipur, India, Sept 21–24, 2016, Proceedings. Springer, Singapore, pp 30–41CrossRefGoogle Scholar
  265. Sethi B, Fatès N, Das S (2014) Reversibility of elementary cellular automata under fully asynchronous update. In: Proceedings of 11th annual conference theory and applications of models of computation, TAMC 2014, India. Springer, pp 39–49Google Scholar
  266. Sethi B, Roy S, Das S (2016) Asynchronous cellular automata and pattern classification. Complexity 21(S1):370–386MathSciNetCrossRefGoogle Scholar
  267. Shaw C, Chatterji D, Maji P, Sen S, Roy BN, Chaudhuri PP (2003) A pipeline architecture for encompression (encryption + compression) technology. In: Proceedings of VLSI design, pp 277–282Google Scholar
  268. Shaw C, Maji P, Saha S, Sikdar BK, Roy S, Chaudhuri PP (2004a) Cellular automata based encompression technology for voice data. In: Proceedings of international conference on cellular automata, research and industry, ACRI 2004, Netherlands, pp 258–267Google Scholar
  269. Shaw C, Sikdar BK, Maiti NC (2004b) CA based document compression technology. In: Proceedings of 11th international conference on neural information processing, ICONIP, pp 679–685Google Scholar
  270. Shaw C, Das S, Sikdar BK (2006) Cellular automata based encoding technique for wavelet transformed data targeting still image compression. In: Proceedings of international conference on cellular automata, research and industry, ACRI 2006, France, pp 141–146Google Scholar
  271. Shereshevsky MA (1992) Lyapunov exponent for one-dimensional cellular automata. J Nonlinear Sci 2:1–8MathSciNetzbMATHCrossRefGoogle Scholar
  272. Siap I, Akin H, Uğuz S (2011) Structure and reversibility of 2d hexagonal cellular automata. Comput Math Appl 62(11):4161–4169MathSciNetzbMATHCrossRefGoogle Scholar
  273. Sikdar BK, Paul K, Biswas GP, Boppana V, Yang C, Mukherjee S, Chaudhuri PP (2000) Theory and application of gf(\(2^p\)) cellular automata as on-chip test pattern generator. In: Proceedings of 13th international conference on VLSI design, 2000, pp 556–561Google Scholar
  274. Sikdar BK, Ganguly N, Karmakar A, Chowdhury S, Chaudhuri PP (2001) Multiple attractor cellular automata for hierarchical diagnosis of VLSI circuits. In: Proceedings of 10th Asian test symposium, Japan, pp 385–390Google Scholar
  275. Sikdar BK, Ganguly N, Chaudhuri PP (2002) Design of hierarchical cellular automata for on-chip test pattern generator. IEEE Trans Comput Aided Design Integr Circuits Syst 21(12):1530–1539CrossRefGoogle Scholar
  276. Sipper M, Tomassini M (1996) Generating parallel random number generators by cellular programming. Int J Modern Phys 7(2):180–190CrossRefGoogle Scholar
  277. Smith AR III (1971a) Cellular automata complexity trade-offs. Inf Control 18:466–482MathSciNetzbMATHCrossRefGoogle Scholar
  278. Smith AR III (1971b) Simple computation-universal cellular spaces. J ACM 18(3):339–353MathSciNetzbMATHCrossRefGoogle Scholar
  279. Smith AR III (1976) Introduction to and survey of polyautomata theory. In: Automata languages development, pp 405–422Google Scholar
  280. Soto JMG (2008) Computation of explicit preimages in one-dimensional cellular automata applying the de bruijn diagram. J Cell Autom 3(3):219–230 (Special Issues)MathSciNetzbMATHGoogle Scholar
  281. Stratmann M, Worsch T (2002) Leader election in d-dimensional ca in time diam log(diam). Future Gener Comput Syst 18(7):939–950zbMATHCrossRefGoogle Scholar
  282. Sutner K (1991) De bruijin graphs and linear cellular automata. Complex Syst 5(1):19–30MathSciNetzbMATHGoogle Scholar
  283. Suzudo T (2004) Spatial pattern formation in asynchronous cellular automata with mass conservation. Physica A 343:185–200MathSciNetCrossRefGoogle Scholar
  284. Takesue S (1995) Staggered invariants in cellular automata. Complex Syst 9(2):149–168MathSciNetzbMATHGoogle Scholar
  285. Terrier V (2004) Two-dimensional cellular automata and their neighborhoods. Theor Comput Sci 312(2):203–222MathSciNetzbMATHCrossRefGoogle Scholar
  286. Thatcher JW (1964) Universality in the von neumann cellular model. Technical report, DTIC DocumentGoogle Scholar
  287. Toffoli T (1977) Computation and construction universality of reversible cellular automata. J Comput Syst Sci 15:213–231MathSciNetzbMATHCrossRefGoogle Scholar
  288. Toffoli T, Margolus N (1987) Cellular automata machines: a new environment for modeling. MIT Press, CambridgezbMATHGoogle Scholar
  289. Toffoli T, Margolus NH (1990) Invertible cellular automata: a review. Physica D 45(1):229–253MathSciNetzbMATHCrossRefGoogle Scholar
  290. Tomassini M (2006) Generalized automata networks. In: Proceedings of international conference on cellular automata, research and industry, ACRI 2006, France. Springer, Berlin, pp 14–28Google Scholar
  291. Tomassini M, Venzi M (2002) Artificially evolved asynchronous cellular automata for the density task. In: Proceedings of international conference on cellular automata, research and industry, ACRI 2002, Switzerland. Springer, Berlin, pp 44–55Google Scholar
  292. Tomassini M, Sipper M, Perrenoud M (2000) On the generation of high-quality random numbers by two-dimensional cellular automata. IEEE Trans Comput 49(10):1146–1151zbMATHCrossRefGoogle Scholar
  293. Tomassini M, Giacobini M, Darabos C (2005) Evolution and dynamics of small-world cellular automata. Complex Syst 15:261–284MathSciNetzbMATHGoogle Scholar
  294. Tsalides P (1990) Cellular automata based built-in self-test structures for VLSI systems. Electron Lett 26(17):1350–1352CrossRefGoogle Scholar
  295. Tsalides P, York TA, Thanailakis A (1991) Pseudo-random number generators for VLSI systems based on linear cellular automata. IEEE Proc E Comput Digit Tech 138(4):241–249CrossRefGoogle Scholar
  296. Uğuz S, Akin H, Siap I (2013) Reversibility algorithms for 3-state hexagonal cellular automata with periodic boundaries. Int J Bifurc Chaos 23(06):1350101MathSciNetzbMATHCrossRefGoogle Scholar
  297. Uğuz S, Sahin U, Akin H, Siap I (2014) Self-replicating patterns in 2D linear cellular automata. Int J Bifurc Chaos 24(1):1430,002MathSciNetzbMATHCrossRefGoogle Scholar
  298. Umeo H, Hisaoka M, Sogabe T (2005) A survey on optimum-time firing squad synchronization algorithms for one-dimensional cellular automata. Intl J Unconv Comput 1(4):403–426zbMATHGoogle Scholar
  299. Vichniac GY (1984) Simulating physics with cellular automata. Physica D 10(1):96–116MathSciNetzbMATHCrossRefGoogle Scholar
  300. Vollmar R (1977) On two modified problems of synchronization in cellular automata. Acta Cybern 3(4):293–300MathSciNetzbMATHGoogle Scholar
  301. Voorhees B (1997) Some parameters characterizing cellular automata rules. Complex Syst 11(5):373–386MathSciNetzbMATHGoogle Scholar
  302. Voorhees B (2008) Remarks on applications of de bruijn diagrams and their fragments. J Cell Autom 3(3):187–204MathSciNetzbMATHGoogle Scholar
  303. Wang Q, Yu S, Ding W, Leng M (2008) Generating high-quality random numbers by cellular automata with pso. In: Proceedings of 4th international conference on natural computation, ICNC’08, pp 430–433Google Scholar
  304. Ward T (1994) Automorphisms of \({{\mathbb{Z}}}^d\)-subshifts of finite type. Indag Math 5(4):495–504MathSciNetzbMATHCrossRefGoogle Scholar
  305. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442zbMATHCrossRefGoogle Scholar
  306. Wolfram S (1983) Statistical mechanics of cellular automata. Rev Mod Phys 55(3):601–644MathSciNetzbMATHCrossRefGoogle Scholar
  307. Wolfram S (1984) Universality and complexity in cellular automata. Physica 10:1–35MathSciNetzbMATHGoogle Scholar
  308. Wolfram S (1985) Origins of randomness in physical systems. Phys Rev Lett 55:449–452MathSciNetCrossRefGoogle Scholar
  309. Wolfram S (1986a) Cryptography with cellular automata. In: Advances in cryptology—Crypto’85, vol 218. Springer, pp 429–432Google Scholar
  310. Wolfram S (1986b) Random sequence generation by cellular automata. Adv Appl Math 7(2):123–169MathSciNetzbMATHCrossRefGoogle Scholar
  311. Wolfram S (1994) Cellular automata and complexity–collected papers. Westview PressGoogle Scholar
  312. Wolfram S (2002) A new kind of science. Wolfram-Media, ChampaignzbMATHGoogle Scholar
  313. Wongthanavasu S, Sadananda R (2003) A ca-based edge operator and its performance evaluation. J Vis Commun Image Represent 14(2):83–96CrossRefGoogle Scholar
  314. Wuensche A (1994) Complexity in one-D cellular automata: gliders, basins of attraction and the z parameter. Working papers 94-04-025, Santa Fe InstituteGoogle Scholar
  315. Wuensche A (1998) Classifying cellular automata automatically. Santa Fe Institute Working Paper 98-02-018Google Scholar
  316. Wuensche A (2017) Discrete dynamics lab. Accessed Aug 25, 2017
  317. Xiao X, Shao S, Huang Z, Chou K (2006) Using pseudo amino acid composition to predict protein structural classes: approached with complexity measure factor. J Comput Chem 27(4):478–482CrossRefGoogle Scholar
  318. Yang XS, Yang YZ (2007) Cellular automata networks. In: Proceedings of unconventional computing. Luniver Press, pp 280–302Google Scholar
  319. Ye R, Li H (2008) A novel image scrambling and watermarking scheme based on cellular automata. In: Proceedings of international symposium on electronic commerce and security, pp 938–941Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Information TechnologyIndian Institute of Engineering Science and TechnologyShibpur, HowrahIndia
  2. 2.School of Computing EngineeringKIIT UniversityBhubaneswarIndia

Personalised recommendations