Vitek® MS v3.0 System in the Identification of Filamentous Fungi

  • Dolores PinheiroEmail author
  • Carolina Monteiro
  • Miguel A. Faria
  • Eugénia Pinto
Original Article


Infections caused by filamentous fungi are rising in incidence and became a serious health concern. Their rapid and reliable identification in the clinical laboratory is essential for an early and accurate diagnosis to guide timely therapy. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been reported as a rapid and reliable method for identification of bacteria and yeasts isolated from clinical samples. However, it has less used for molds identification. The aim of this study was to evaluate Vitek® MS (a MALDI-TOF MS system) ability to identify molds and differentiate species within a complex. A collection of 90 filamentous fungi, 70 clinical and 20 environmental isolates, was studied by morphological and molecular methods and by Vitek® MS. Seventy-four isolates (82.2%) were identified using Vitek® MS v3.0 at Genus/Complex/Species group level; within these, 47/74 (63.5%) were correctly identified at species level and only one was misidentified. In contrast, 16/90 isolates (17.8%) were not identified, of which 13 were not present in the database. Results here expressed favor Vitek® MS v3.0 as a very useful system for identification of most common clinical isolates of filamentous fungi. Accordingly, it may be an important tool for clinical microbiology laboratories in their task to answer to clinicians, adequately and rapidly, helping in proper patient’s management.


MALDI-TOF MS Molecular biology Filamentous fungi identification Clinical and environmental isolates 



The authors thank to bioMérieux, Portugal for the offer of the Vitek® MS Mould Reagent “Kit.” This research was partially supported through national funds provided by FCT/MCTES (PIDDAC) and ERDF through the COMPETE–POFC program, under the Strategic Funding UID/Multi/04423/2013, in the framework of the program PT2020. M. A. Faria acknowledges FoodNanoHealth (NORTE-01-0145-FEDER-000011). Part of this study was presented as a poster, on ECCMID 2017.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Huang Y, Zhang M, Zhu M, Wang M, Sun Y, Gu H, et al. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for the identification of clinical filamentous fungi. World J Microbiol Biotechnol. 2017;33:142.CrossRefGoogle Scholar
  2. 2.
    Pinto E, Monteiro C, Maia M, Faria MA, Lopes V, Lameiras C, et al. Aspergillus species and antifungals susceptibility in clinical setting in the North of Portugal: cryptic species and emerging azoles resistance in A. fumigatus. Front Microbiol. 2018;9:1656.CrossRefGoogle Scholar
  3. 3.
    Kidd S, Halliday C, Alexiou H, Ellis D. Descriptions of medical fungi. 3rd ed. Adelaide: Pfizer ANZMIG; 2016.Google Scholar
  4. 4.
    Manji R, Bythrow M, Branda JA, Burnham CA, Ferraro MJ, Garner OB, et al. Multi-center evaluation of the VITEK® MS system for mass spectrometric identification of non-Enterobacteriaceae Gram-negative bacilli. Eur J Clin Microbiol Infect Dis. 2014;33:337–46.CrossRefGoogle Scholar
  5. 5.
    Richter SS, Sercia L, Branda JA, Burnham CA, Bythrow M, Ferraro MJ, et al. Identification of Enterobacteriaceae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using the VITEK MS system. Eur J Clin Microbiol Infect Dis. 2013;32:1571–8.CrossRefGoogle Scholar
  6. 6.
    Rychert J, Burnham CA, Bythrow M, Garner OB, Ginocchio CC, Jennemann R, et al. Multicenter evaluation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Gram-positive aerobic bacteria. J Clin Microbiol. 2013;51:2225–31.CrossRefGoogle Scholar
  7. 7.
    Westblade LF, Jennemann R, Branda JA, Bythrow M, Ferraro MJ, Garner OB, et al. Multicenter study evaluating the Vitek MS system for identification of medically important yeasts. J Clin Microbiol. 2013;51:2267–72.CrossRefGoogle Scholar
  8. 8.
    Ranque S, Normand AC, Cassagne C, Murat JB, Bourgeois N, Dalle F, et al. MALDI-TOF mass spectrometry identification of filamentous fungi in the clinical laboratory. Mycoses. 2014;57:135–40.CrossRefGoogle Scholar
  9. 9.
    Sanguinetti M, Posteraro B. Identification of molds by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2017;55:369–79.CrossRefGoogle Scholar
  10. 10.
    Park JH, Shin JH, Choi MJ, Choi JU, Park YJ, Jang SJ, et al. Evaluation of matrix-assisted laser desorption/ionization time-of-fight mass spectrometry for identification of 345 clinical isolates of Aspergillus species from 11 Korean hospitals: comparison with molecular identification. Diagn Microbiol Infect Dis. 2018;87:28–31.CrossRefGoogle Scholar
  11. 11.
    Rychert J, Slechta ES, Barker AP, Miranda E, Babady NE, Tang YW, et al. Multicenter evaluation of the Vitek MS v3.0 system for the identification of filamentous fungi. J Clin Microbiol. 2018;56:17.Google Scholar
  12. 12.
    McMullen AR, Wallace MA, Pincus DH, Wilkey K, Burnham CA. Evaluation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of clinically relevant filamentous fungi. J Clin Microbiol. 2016;54:2068–73.CrossRefGoogle Scholar
  13. 13.
    Dupont D, Normand AC, Persat F, Hendrickx M, Piarroux R, Wallon M. Comparison of matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) systems for the identification of moulds in the routine microbiology laboratory. Clin Microbiol Infect. 2019;25:892–7.CrossRefGoogle Scholar
  14. 14.
    De Hoog GS, Guarro J, Gene J, Figueras MJ. Atlas of clinical fungi. Washington: ASM Press; 2001.Google Scholar
  15. 15.
    Balajee SA, Houbraken J, Verweij PE, Hong S-B, Yaghuchi T, Varga J, et al. Aspergillus species identification in the clinical setting. Stud Mycol. 2007;59:39–46.CrossRefGoogle Scholar
  16. 16.
    Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61:1323–30.Google Scholar
  17. 17.
    O’Donnell KL, Nirenberg HI, Aoki T, Cigelnik E. A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience. 2000;41:61–78.CrossRefGoogle Scholar
  18. 18.
    White TJ, Bruns TD, Lee SB, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innes MA, Gelfand DH, Sninsky JS, White TJ, editors. PCR protocols. London: Academic Press; 1990. p. 315–22.Google Scholar
  19. 19.
    Monteiro C, Pinheiro D, Maia M, Faria MA, Lameiras C, Pinto E. Aspergillus species collected from environmental air samples in Portugal- molecular identification, antifungal susceptibility and sequencing of cyp51A gene on A. fumigatus sensu stricto itraconazole-resistant. J Appl Microbiol. 2019;126:1140–8.CrossRefGoogle Scholar
  20. 20.
    Alastruey-Izquierdo A, Mellado E, Peláez T, Pemán J, Zapico S, Alvarez M, et al. Population-based survey of filamentous fungi and antifungal resistance in Spain (FILPOP Study). Antimicrob Agents Chemother. 2013;57:3380–7.CrossRefGoogle Scholar
  21. 21.
    Lamoth F. Aspergillus fumigatus-related species in clinical practice. Front Microbiol. 2016;7:683.Google Scholar
  22. 22.
    Howard SJ. Multi-resistant aspergillosis due to cryptic species. Mycopathologia. 2014;178:435–9.CrossRefGoogle Scholar
  23. 23.
    Al-Hatmi AMS, Curfs-Breuker I, De Hoog GS, Meis JF, Verweij PE. Antifungal susceptibility testing of Fusarium: a practical approach. J Fungi. 2017;3:19.CrossRefGoogle Scholar
  24. 24.
    Sedlacek L, Graf B, Schwarz C, Albert F, Peter S, Würstl B, et al. Prevalence of Scedosporium species and Lomentospora prolificans in patients with cystic fibrosis in a multicenter trial by use of a selective medium. J Cyst Fibros. 2015;14:237–41.CrossRefGoogle Scholar
  25. 25.
    Wang H, Wan Z, Li R, Lu Q, Yu J. Molecular identification and susceptibility of clinically relevant Scedosporium spp. in China. Biomed Res Int. 2015. Scholar
  26. 26.
    Buskirk AD, Hettick JM, Chipinda I, Law BF, Siegel PD, Slaven JE, et al. Fungal pigments inhibit the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of darkly pigmented fungi. Anal Biochem. 2011;411:122–8.CrossRefGoogle Scholar
  27. 27.
    Singh A, Singh PK, Kumar A, Chander J, Khanna G, Roy P, et al. Molecular and matrix-assisted laser desorption ionization-time of flight mass spectrometry-based characterization of clinically significant melanized fungi in India. J Clin Microbiol. 2017;55:1090–103.CrossRefGoogle Scholar
  28. 28.
    Zhou L, Chen Y, Xu Y. Performance of VITEK mass spectrometry V3.0 for rapid identification of clinical Aspergillus fumigatus in different culture conditions based on ribosomal proteins. Infect Drug Resist. 2017;8:499–506.CrossRefGoogle Scholar
  29. 29.
    Cassagne C, Normand AC, L’Ollivier C, Ranque S, Piarroux R. Performance of MALDI-TOF MS platforms for fungal identification. Mycoses. 2016;59:678–90.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratory of Microbiology, Service of Clinical PathologyCentro Hospitalar Universitário de S. JoãoPortoPortugal
  2. 2.Laboratory of Microbiology, Biological Sciences Department, Faculty of PharmacyUniversity of PortoPortoPortugal
  3. 3.LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of PharmacyUniversity of PortoPortoPortugal
  4. 4.Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoMatosinhosPortugal

Personalised recommendations