, Volume 184, Issue 2, pp 227–238 | Cite as

Secreted Hydrolytic and Haemolytic Activities of Malassezia Clinical Strains

  • Chui Boon Tee
  • Yoshihiro Sei
  • Susumu KajiwaraEmail author
Original Paper


Malassezia yeasts are opportunistic pathogens associated with a number of skin diseases in animals and humans. The free fatty acids released through these organisms’ lipase and phospholipase activities trigger inflammation in the host; thus, these lipase and phospholipase activities are widely recognised as some of the most important factors in Malassezia pathogenesis. In this study, we sought to investigate and examine the relationship between these secreted hydrolytic activities and haemolytic activity in newly isolated Malassezia clinical strains. This characterisation was expected to elucidate pathogenicity of this fungus. We isolated 35 clinical strains of Malassezia spp.; the most frequently isolated species were M. sympodialis and M. furfur. Next, we analysed the hydrolytic activities of all of these clinical isolates; all of these strains (except for one M. dermatis isolate) showed detectable lipase and phospholipase activities against 4-nitrophenyl palmitate and L-α-phosphatidylcholine, dipalmitoyl, respectively. Most of the M. globosa isolates showed higher lipase activities than isolates of other Malassezia species. In terms of phospholipase activity, no significant difference was observed among species of Malassezia, although one isolate of M. globosa showed considerably higher phospholipase activity than the others. All tested strains also exhibited haemolytic activity, both as determined using 5% (v/v) sheep blood agar (halo assay) and by quantitative assay. Although all tested strains showed detectable haemolytic activity, we did not observe an apparent correlation between the secreted lipase and phospholipase activities and haemolytic activity. We infer that the haemolytic activities of Malassezia spp. are mediated by non-enzymatic factor(s) that are present in the secreted samples.


Malassezia Lipase Phospholipase Haemolysis Clinical isolation 



We thank Dr. Ryuji Maruyama, Maruyama Dermatology Clinic, for cooperating with us in the isolation of clinical samples.


  1. 1.
    Honnavar P, Prasad GS, Ghosh A, Dogra S, Handa S. Rudramurthy SM. Malassezia arunalokei sp. nov., a novel yeast species isolated from seborrheic dermatitis patients and healthy individuals from India. J Clin Microbiol. 2016;54:1826–34. Scholar
  2. 2.
    Cabañes FJ, Coutinho SDA, Puig L, Bragulat MR, Castellá G. New lipid-dependent Malassezia species from parrots. Rev Iberoam Micol. 2016;33:92–9. Scholar
  3. 3.
    Lorch JM, Palmer JM, Vanderwolf KJ, Schmidt KZ, Verant ML, Weller TJ, et al. Malassezia vespertilionis sp. nov.: a new cold-tolerant species of yeast isolated from bats. Persoonia. 2018;41:56–70. Scholar
  4. 4.
    Ashbee HR. Update on the genus Malassezia. Med Mycol. 2007;45:287–303. Scholar
  5. 5.
    Grice EA, Dawson TL. Host–microbe interactions: Malassezia and human skin. Curr Opin Microbiol. 2017;40:81–7. Scholar
  6. 6.
    Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16:143–55. Scholar
  7. 7.
    Gupta AK, Batra R, Bluhm R, Boekhout T, Dawson TL. Skin diseases associated with Malassezia species. J Am Acad Dermatol. 2004;51:785–98. Scholar
  8. 8.
    Sugita T, Boekhout T, Velegraki A, Guillot J, Hadina S, Cabañes FJ. Epidemiology of malassezia-related skin diseases. In: Boekhout T, Mayser P, Guého-Kellermann E, Velegraki A, editors. Malassezia and the Skin. Berlin: Springer; 2010. p. 65–119. Scholar
  9. 9.
    Boekhout T, Guého-Kellermann E, Mayser P, Velegraki A. Malassezia and the Skin. 1st ed. Berlin: Springer; 2010. Scholar
  10. 10.
    Mancianti F, Rum A, Nardoni S, Corazza M. Extracellular enzymatic activity of Malassezia spp. isolates. Mycopathologia. 2001;149:131–5. Scholar
  11. 11.
    Gupta AK, Kohli Y, Faergemann J, Summerbell RC. Epidemiology of Malassezia yeasts associated with pityriasis versicolor in Ontario, Canada. Med Mycol. 2001;39:199–206.CrossRefGoogle Scholar
  12. 12.
    Gaitanis G, Velegraki A, Mayser P, Bassukas ID. Skin diseases associated with Malassezia yeasts: facts and controversies. Clin Dermatol. 2013;31:455–63. Scholar
  13. 13.
    Wu G, Zhao H, Li C, Rajapakse MP, Wong WC, Xu J, et al. Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human skin. PLoS Genet. 2015;11:1–26. Scholar
  14. 14.
    Muhsin TM, Aubaid AH, Al-Duboon AH. Extracellular enzyme activities of dermatophytes and yeast isolates on solid media. Mycoses. 1997;40:465–9.CrossRefGoogle Scholar
  15. 15.
    Dawson TL. Malassezia globosa and restricta: breakthrough understanding of the etiology and treatment of dandruff and seborrheic dermatitis through whole-genome analysis. J Investig Dermatology Symp Proc. 2007;12:15–9. Scholar
  16. 16.
    Xu J, Saunders CW, Hu P, Grant RA, Boekhout T, Kuramae EE, et al. Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci. 2007;104:18730–5. Scholar
  17. 17.
    Ghannoum MA. Extracellular virulence phospholipases factor in as universal fungi pathogenic. Nippon Ishinkin Gakkai Zasshi. 1998;39:55–9.CrossRefGoogle Scholar
  18. 18.
    Cafarchia C, Otranto D. Association between phospholipase production by Malassezia pachydermatis and skin lesions. J Clin Microbiol. 2004;42:4868–9. Scholar
  19. 19.
    Lee YW, Lee SY, Lee Y, Jung WH. Evaluation of expression of lipases and phospholipases of Malassezia restricta in patients with seborrheic dermatitis. Ann Dermatol. 2013;25:310–4. Scholar
  20. 20.
    Honnavar P, Chakrabarti A, Prasad GS, Singh P, Dogra S, Rudramurthy SM. β-Endorphin enhances the phospholipase activity of the dandruff causing fungi Malassezia globosa and Malassezia restricta. Med Mycol. 2017;55:150–4. Scholar
  21. 21.
    Plotkin LI, Mathov I, Squiquera L, Leoni J. Arachidonic acid released from epithelial cells by Malassezia furfur phospholipase A2: a potential pathophysiologic mechanism. Mycologia. 1998;90:163. Scholar
  22. 22.
    Goebel W, Chakraborty T, Kreft J. Bacterial hemolysins as virulence factors. Antonie Van Leeuwenhoek. 1988;54:453–63. Scholar
  23. 23.
    Nayak AP, Green BJ, Beezhold DH. Fungal hemolysins. Med Mycol. 2013;51:1–16. Scholar
  24. 24.
    Schaufuss P, Steller U. Haemolytic activities of Trichophyton species. Med Mycol. 2003;41:511–6. Scholar
  25. 25.
    Juntachai W, Kummasook A, Mekaprateep M, Kajiwara S. Identification of the haemolytic activity of Malassezia species. Mycoses. 2014;57:163–8. Scholar
  26. 26.
    Triana S, Ohm RA, De Cock H, Restrepo S, Celis A. Draft genome sequence of the animal and human pathogen Malassezia pachydermatis strain CBS 1879. Genome Announc. 2015. Scholar
  27. 27.
    Deangelis YM, Saunders CW, Johnstone KR, Reeder NL, Coleman CG, Kaczvinsky JR, et al. Isolation and expression of a Malassezia globosa lipase gene, LIP1. J Invest Dermatol. 2007;127:2138–46. Scholar
  28. 28.
    Zhu Y, Engström PG, Tellgren-Roth C, Baudo CD, Kennell JC, Sun S, et al. Proteogenomics produces comprehensive and highly accurate protein-coding gene annotation in a complete genome assembly of Malassezia sympodialis. Nucleic Acids Res. 2017;45:2629–43. Scholar
  29. 29.
    Juntachai W, Oura T, Murayama SY, Kajiwara S. The lipolytic enzymes activities of Malassezia species. Med Mycol. 2009;47:477–84. Scholar
  30. 30.
    Mirhendi H, Makimura K, Zomorodian K, Yamada T, Sugita T, Yamaguchi H. A simple PCR-RFLP method for identification and differentiation of 11 Malassezia species. J Microbiol Methods. 2005;61:281–4. Scholar
  31. 31.
    Morishita N, Sei Y, Sugita T. Molecular analysis of Malassezia microflora from patients with pityriasis versicolor. Mycopathologia. 2006;161:61–5. Scholar
  32. 32.
    Gaitanis G, Velegraki A, Alexopoulos EC, Chasapi V, Tsigonia A, Katsambas A. Distribution of Malassezia species in pityriasis versicolor and seborrhoeic dermatitis in Greece. typing of the major pityriasis versicolor isolate M. globosa. Br J Dermatol. 2006;154:854–9. Scholar
  33. 33.
    Gupta AK, Kohli Y, Summerbell RC, Faergemann J. Quantitative culture of Malassezia species from different body sites of individuals with or without dermatoses. Med Mycol. 2001;39:243–51. Scholar
  34. 34.
    Sugita T, Takashima M, Shinoda T, Suto H, Unno T, Tsuboi R, et al. New yeast species, Malassezia dermatis, isolated from patients with atopic dermatitis. J Clin Microbiol. 2002;40:1363–7. Scholar
  35. 35.
    Lee YW, Kim SM, Oh BH, Lim SH, Choe YB, Ahn KJ. Isolation of 19 strains of Malassezia dermatis from healthy human skin in Korea. J Dermatol. 2008;35:772–7. Scholar
  36. 36.
    Gaitanis G, Velegraki A, Alexopoulos EC, Kapsanaki-Gotsi E, Zisova L, Ran Y, et al. Malassezia furfur fingerprints as possible markers for human phylogeography. ISME J. 2009;3:498–502. Scholar
  37. 37.
    Crespo Erchiga V, Ojeda Martos A, Vera Casano A, Crespo Erchiga A, Sanchez Fajardo F. Malassezia globosa as the causative agent of pityriasis versicolor. Br J Dermatol. 2000;143:799–803. Scholar
  38. 38.
    Teramoto H, Kumeda Y, Yokoigawa K, Hosomi K, Kozaki S, Mukamoto M, et al. Genotyping and characterisation of the secretory lipolytic enzymes of Malassezia pachydermatis isolates collected dogs. Vet Rec. 2015;2:e000124. Scholar
  39. 39.
    Deangelis YM, Saunders CW, Johnstone KR, Reeder NL, Coleman CG, Kaczvinsky JR, et al. Isolation and expression of a Malassezia globosa lipase gene, LIP1. J Invest Dermatol. 2007;127:2138–46. Scholar
  40. 40.
    Ro BI, Dawson TL. The role of sebaceous gland activity and scalp microfloral metabolism in the etiology of seborrheic dermatitis and dandruff. J Investig Dermatol Symp Proc. 2005;10:194–7. Scholar
  41. 41.
    Sommer B, Overy DP, Haltli B, Kerr RG. Secreted lipases from Malassezia globosa: recombinant expression and determination of their substrate specificities. Microbiology. 2016;162:1069–79. Scholar
  42. 42.
    Park M, Cho YJ, Lee YW, Jung WH. Whole genome sequencing analysis of the cutaneous pathogenic yeast Malassezia restricta and identification of the major lipase expressed on the scalp of patients with dandruff. Mycoses. 2017;60:188–97. Scholar
  43. 43.
    Crespo MJ, Abarca ML, Cabanes FJ. Evaluation of different preservation and storage methods for Malassezia spp. J Clin Microbiol. 2000;38:3872–5.Google Scholar
  44. 44.
    Watanabe T, Takano M, Murakami M, Tanaka H, Matsuhisa A, Nakao N, et al. Characterization of a haemolytic factor from Candida albicans. Microbiology. 1999;145:689–94. Scholar
  45. 45.
    Fujiwara A, Landau JW, Newcomer VD. Preliminary characterization of the hemolysin of Rhizopus Nigricans. Mycopathologia et mycologia applicata. 1970;40:139–44.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
  2. 2.Department of DermatologyTeikyo University School of Medicine, Mizonokuchi HospitalKawasakiJapan

Personalised recommendations