Molecular Identification and Antifungal Susceptibility of Clinical Isolates of Sporothrix schenckii Complex in Medellin, Colombia
Abstract
Background
Sporotrichosis is a subcutaneous mycosis that affects humans and other animals. Infection prevails in tropical and subtropical countries. Until a few years ago, it was considered that two varieties of Sporothrix schenckii caused this mycosis, but by applying molecular taxonomic markers, it has been demonstrated that there are several cryptic species within S. schenckii complex which varies in susceptibility, virulence, and geographic distribution.
Objective
This study aimed to identify the clinical isolates of Sporothrix spp. from patients with sporotrichosis in Medellin, Colombia, using two markers and to evaluate the in vitro susceptibility to itraconazole.
Methods
Thirty-four clinical isolates of Sporothrix spp. from Colombia, three from Mexico, and one from Guatemala were identified through sequencing of the noncoding region ITS-1 + 5.8SDNAr + ITS-2 and of the fragment containing exons 3 and 4 of the β-tubulin gene. Clinical isolate sequences were compared with GenBank reference sequences using the BLASTN tool, and then, phylogenetic analysis was performed. Besides, the in vitro susceptibility to itraconazole was evaluated by determining the minimum inhibitory concentrations according to the CLSI M38-A2 method.
Results
Clinical isolates were identified by morphology as Sporothrix spp. Using the molecular markers, ITS and β-tubulin, isolates were identified as S. schenckii sensu stricto (25) and Sporothrix globosa (13). Susceptibility to itraconazole was variable among clinical isolates.
Conclusion
This is the first scientific publication that identifies species that cause sporotrichosis in Colombia, along with the antifungal susceptibility to itraconazole.
Keywords
Sporothrix schenckii complex Internal transcribed spacer - ITS Taxonomy β-tubulin Antifungal susceptibility ItraconazoleNotes
Acknowledgements
Financial support for this work was provided by FPIT of Banco de la República, Colombia Grant No 3756 and CODI-UDEA 2604. Also, we thank Dr. Concepcion Toriello for the kind gift of some clinical isolates. We also thank the professors and laboratory assistants, mainly to Marleny Gallego, who contributed to the collection of the clinical isolates.
Compliance with Ethical Standards
Conflict of interest
The authors declare no conflict of interest.
Supplementary material
References
- 1.Barros ML, de de Almeida Paes R, Schubach AO. Sporothrix schenckii and sporotrichosis. Clin Microbiol Rev. 2011;24(4):633–54. https://doi.org/10.1128/CMR.00007-11.CrossRefPubMedGoogle Scholar
- 2.Lopes-Bezerra LM, Schubach A, Rosane O. Sporothrix schenckii and sporotrichosis. An Acad Bras Ciênc. 2006;78(2):293–308. https://doi.org/10.1590/S0001-37652006000200009.CrossRefPubMedGoogle Scholar
- 3.Ramos-e-Silva M, Vasconcelos C, Carneiro S, Cestari T. Sporotrichosis. Clin Dermatol. 2007;25(2):181–7. https://doi.org/10.1016/j.clindermatol.2006.05.006.CrossRefPubMedGoogle Scholar
- 4.Schubach A, Schubach TMP, Barros ML, Wanke B. Cat-transmitted sporotrichosis, Rio de Janeiro, Brazil. Emerg Infect Dis. 2005;11(12):1952–4. https://doi.org/10.3201/eid1112.040891.CrossRefPubMedGoogle Scholar
- 5.Frean JA, Isaacson M, Miller GB, Mistry BD, Heney C. Sporotrichosis following a rodent bite. A case report. Mycopathologia. 1991;116(1):5–8.CrossRefPubMedGoogle Scholar
- 6.Haddad VJ, Miot HA, Bartoli LD, Cardoso Ade C, de Camargo RM. Localized lymphatic sporotrichosis after fish-induced injury (Tilapia sp.). Med Mycol. 2002;40(4):425–7.CrossRefPubMedGoogle Scholar
- 7.Miller SD, Keeling JH. Ant sting sporotrichosis. Cutis. 2002;69(6):439–42.PubMedGoogle Scholar
- 8.Chakrabarti A, Bonifaz A, Gutierrez-Galhardo MC, Takashi M, Shanshan L. Global epidemiology of sporotrichosis. Med Mycol. 2015;53:3–14. https://doi.org/10.1093/mmy/myu062.CrossRefPubMedGoogle Scholar
- 9.Lupi O, Tyring SK, McGinnis MR. Tropical dermatology: fungal tropical diseases. J Am Acad Dermatol. 2005;53(6):931–51. https://doi.org/10.1016/j.jaad.2004.10.883.CrossRefPubMedGoogle Scholar
- 10.Queiroz-Telles F, Nucci M, Colombo AL, Tobon A, Restrepo A. Mycoses of implantation in Latin America: an overview of epidemiology, clinical manifestations, diagnosis and treatment. Med Mycol. 2011;49(3):225–36. https://doi.org/10.3109/13693786.2010.539631.CrossRefPubMedGoogle Scholar
- 11.Castro Alegría LÁ. Esporotricosis cutánea: experiencia de un hospital de tercer nivel en Cali, Colombia. Iatreia. 2013;26(2):153–9.Google Scholar
- 12.Mesa Arango AC, Sanchez M. Esporotricosis: Una experiencia en Medellín, Colombia. Rev Mex Micol. 2000;16:11–6.Google Scholar
- 13.Rubio G, Sánchez G, Porras L, Alvarado Z. Esporotricosis: prevalencia, perfil clínico y epidemiológico en un centro de referencia en Colombia. Rev Iberoam Micol. 2010;27(2):75–9. https://doi.org/10.1016/j.riam.2010.01.001.CrossRefPubMedGoogle Scholar
- 14.Uribe-Jaramillo F, Franco LIG, Robledo MA, Restrepo A. Esporotricosis: Bases Anatómicas y Clínicas de su Polimorfismo. Rev Soc Col Dermatol. 1993;6:252–8.Google Scholar
- 15.Ordoñez N, Castillo J, Castañeda E. Esporotricosis diagnosticada por el laboratorio. Biomedica. 1989;9(1–2):26–9.CrossRefGoogle Scholar
- 16.Ajello L, Kaplan W. A new variant of Sporothrix schenckii. Mykosen. 1969;12(11):633–44.CrossRefPubMedGoogle Scholar
- 17.Ishizaki H, Kawasaki M, Aoki M, Miyaji M, Nishimura K, Garcia Fernandez JA. Mitochondrial DNA analysis of Sporothrix schenckii in Costa Rica. J Med Vet Mycol. 1996;34(1):71–3.CrossRefPubMedGoogle Scholar
- 18.Ishizaki H, Kawasaki M, Aoki M, Matsumoto T, Padhye AA, Mendoza M, et al. Mitochondrial DNA analysis of Sporothrix schenckii in North and South America. Mycopathologia. 1998;142(3):115–8.CrossRefPubMedGoogle Scholar
- 19.Ishizaki H, Kawasaki M, Aoki M, Vismer H, Muir D. Mitochondrial DNA analysis of Sporothrix schenckii in South Africa and Australia. Med Mycol. 2000;38(6):433–6.CrossRefPubMedGoogle Scholar
- 20.Mora-Cabrera M, Alonso RA, Ulloa-Arvizu R, Torres-Guerrero H. Analysis of restriction profiles of mitochondrial DNA from Sporothrix schenckii. Med Mycol. 2001;39(5):439–44.CrossRefPubMedGoogle Scholar
- 21.Suzuki K, Kawasaki M, Ishizaki H. Analysis of restriction profiles of mitochondrial DNA from Sporothrix schenckii and related fungi. Mycopathologia. 1988;103(3):147–51.CrossRefPubMedGoogle Scholar
- 22.Takeda Y, Kawasaki M, Ishizaki H. Phylogeny and molecular epidemiology of Sporothrix schenckii in Japan. Mycopathologia. 1991;116(1):9–14.CrossRefPubMedGoogle Scholar
- 23.Watanabe S, Kawasaki M, Mochizuki T, Ishizaki H. RFLP analysis of the internal transcribed spacer regions of Sporothrix schenckii. Nihon Ishinkin Gakkai Zasshi. 2004;45(3):165–75.CrossRefPubMedGoogle Scholar
- 24.Mesa-Arango AC, Del Rocio R-MM, Perez-Mejia A, Navarro-Barranco H, Souza V, Zuniga G, et al. Phenotyping and genotyping of Sporothrix schenckii isolates according to geographic origin and clinical form of Sporotrichosis. J Clin Microbiol. 2002;40(8):3004–11.CrossRefPubMedGoogle Scholar
- 25.Marimon R, Gene J, Cano J, Trilles L, Dos Santos LM, Guarro J. Molecular phylogeny of Sporothrix schenckii. J Clin Microbiol. 2006;44(9):3251–6. https://doi.org/10.1128/JCM.00081-06.CrossRefPubMedGoogle Scholar
- 26.Marimon R, Cano J, Gene J, Sutton DA, Kawasaki M, Guarro J. Sporothrix brasiliensis, S. globosa, and S. mexicana, three new Sporothrix species of clinical interest. J Clin Microbiol. 2007;45(10):3198–206. https://doi.org/10.1128/jcm.00808-07.CrossRefPubMedGoogle Scholar
- 27.Marimon R, Gené J, Cano J, Guarro J. Sporothrix luriei: a rare fungus from clinical origin. Medical Mycol. 2008;46(6):621–25. https://doi.org/10.1080/13693780801992837.CrossRefGoogle Scholar
- 28.Arrillaga-Moncrieff I, Capilla J, Mayayo E, Marimon R, Marine M, Gene J, et al. Different virulence levels of the species of Sporothrix in a murine model. Clin Microbiol Infect. 2009;15(7):651–5. https://doi.org/10.1111/j.1469-0691.2009.02824.x.CrossRefPubMedGoogle Scholar
- 29.Orofino-Costa R, Macedo PM, Rodrigues AM, Bernardes-Engemann AR. Sporotrichosis: an update on epidemiology, etiopathogenesis, laboratory and clinical therapeutics. An Bras Dermatol. 2017;92(5):606–20. https://doi.org/10.1590/abd1806-4841.2017279.CrossRefPubMedGoogle Scholar
- 30.Rodrigues AM, Cruz Choappa R, Fernandes GF, de Hoog GS, de Camargo ZP. Sporothrix chilensis sp. nov. (Ascomycota: Ophiostomatales), a soil-borne agent of human sporotrichosis with mild-pathogenic potential to mammals. Fungal Biol. 2016;120(2):246–64. https://doi.org/10.1016/j.funbio.2015.05.006.CrossRefPubMedGoogle Scholar
- 31.Cruz Choappa RM, Vieille Oyarzo PI, Carvajal Silva LC. Isolation of Sporothrix pallida complex in clinical and environmental samples from Chile. Rev Argent Microbiol. 2014;46(4):311–4. https://doi.org/10.1016/S0325-7541(14)70088-4.PubMedGoogle Scholar
- 32.Dias NM, Oliveira MME, Portela MA, Santos C, Zancope-Oliveira RM, Lima N. Sporotrichosis Caused by Sporothrix mexicana, Portugal. Emerg Infect Dis. 2011;17(10):1975–6. https://doi.org/10.3201/eid1710.110737.CrossRefPubMedGoogle Scholar
- 33.Morrison AS, Lockhart SR, Bromley JG, Kim JY, Burd EM. An environmental Sporothrix as a cause of corneal ulcer. Med Mycol Case Rep. 2013;2:88–90. https://doi.org/10.1016/j.mmcr.2013.03.002.CrossRefPubMedGoogle Scholar
- 34.Zhou X, Rodrigues AM, Feng P, de Hoog GS. Global ITS diversity in the Sporothrix schenckii complex. Fungal Divers. 2014;66(1):153–65.Google Scholar
- 35.Aghayeva DN, Wingfield MJ, de Beer ZW, Kirisits T. Two new Ophiostoma species with Sporothrix anamorphs from Austria and Azerbaijan. Mycologia. 2004;(4):866–78.CrossRefGoogle Scholar
- 36.Gujjari P, Suh S-O, Zhou J. ATCC Mycology Authentication Project. 2008.Google Scholar
- 37.de Beer ZW, Duong TA, Wingfield MJ. The divorce of Sporothrix and Ophiostoma: solution to a problematic relationship. Stud Mycol. 2016;83:165–91.CrossRefPubMedGoogle Scholar
- 38.Freitas DF, Santos SS, Almeida-Paes R, de Oliveira MM, do Valle AC, Gutierrez-Galhardo MC, Zancopé-Oliveira RM, Nosanchuk JD. Increase in virulence of Sporothrix brasiliensis over five years in a patient with chronic disseminated sporotrichosis. Virulence. 2015;6(2):112–20.CrossRefPubMedGoogle Scholar
- 39.Kawasaki A, Watanabe S, Mochizuki T, Ishizaki H. Phylogenetic relation between S. schenckii types inferred from ribosomal RNA genes. Published only in database. 2003.Google Scholar
- 40.de Meyer EM, de Beer ZW, Summerbell RC, Moharram AM, de Hoog GS, Vismer HF, Wingfield MJ. Taxonomy and phylogeny of new wood- and soil-inhabiting Sporothrix species in the Ophiostoma stenoceras-Sporothrix schenckii complex. Mycologia. 2008;100(4):647–61.CrossRefPubMedGoogle Scholar
- 41.de Beer Z, Harrington T, Vismer H, Wingfield B, Wingfield M. Phylogeny of the Ophiostoma stenoceras: Sporothrix schenckii Complex. Mycologia 2003;95(3):434–41. https://doi.org/10.2307/3761885.PubMedGoogle Scholar
- 42.Plattner A, Kim JJ, Reid J, Hausner G, Lim YW, Yamaoka Y, Breuil C. Resolving taxonomic and phylogenetic incongruence within species Ceratocystiopsis minuta. Mycologia. 2009;101(6):878–87.Google Scholar
- 43.White T, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990.Google Scholar
- 44.Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61(4):1323–30.PubMedGoogle Scholar
- 45.Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–66.CrossRefPubMedGoogle Scholar
- 46.Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. https://doi.org/10.1093/molbev/mst010.CrossRefPubMedGoogle Scholar
- 47.Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783–91. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x.CrossRefPubMedGoogle Scholar
- 48.Clinical and Laboratory Standards Institute. M38-A2: reference method for broth dilution antifungal susceptibility testing of filamentous fungi, approved standard. 2nd ed. Wayne: Clinical and Laboratory Standards Institute; 2008.Google Scholar
- 49.De Hoog GS. Atlas of clinical fungi. 2nd ed. Utrecht: Centraalbureau voor Schimmelcultures; 2004.Google Scholar
- 50.Kauffman CA, Bustamante B, Chapman SW, Pappas PG. Clinical practice guidelines for the management of sporotrichosis: 2007 update by the Infectious Diseases Society of America. Clin Infect Dis. 2007;45(10):1255–65. https://doi.org/10.1086/522765.CrossRefPubMedGoogle Scholar
- 51.Zipfel RD, de Beer ZW, Jacobs K, Wingfield BD, Wingfield MJ. Multi-gene phylogenies define Ceratocystiopsis and Grosmannia distinct from Ophiostoma. Stud Mycol. 2006;55:75–97.CrossRefPubMedGoogle Scholar
- 52.Mahmoudi S, Zaini F, Kordbacheh P, Safara M, Heidari M. Sporothrix schenckii complex in Iran: molecular identification and antifungal susceptibility. Med Mycol. 2016;54(6):593–9. https://doi.org/10.1093/mmy/myw006.CrossRefPubMedGoogle Scholar
- 53.Camacho E, Leon-Navarro I, Rodriguez-Brito S, Mendoza M, Nino-Vega GA. Molecular epidemiology of human sporotrichosis in Venezuela reveals high frequency of Sporothrix globosa. BMC Infect Dis. 2015;15(1):94. https://doi.org/10.1186/s12879-015-0839-6.CrossRefPubMedGoogle Scholar
- 54.Stopiglia CDO, Magagnin CM, Castrillón MR, Mendes SDC, Heidrich D, Valente P, et al. Antifungal susceptibilities and identification of species of the Sporothrix schenckii complex isolated in Brazil. Med Mycol. 2014;52(1):56–64. https://doi.org/10.3109/13693786.2013.818726.Google Scholar
- 55.Rodrigues AM, de Hoog G, Zhang Y, de Camargo ZP. Emerging sporotrichosis is driven by clonal and recombinant Sporothrix species. Emerg Microbes Infect. 2014;3(5):e32. https://doi.org/10.1038/emi.2014.33.PubMedGoogle Scholar
- 56.Nilsson RH, Ryberg M, Abarenkov K, Sjokvist E, Kristiansson E. The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol Lett. 2009;296(1):97–101. https://doi.org/10.1111/j.1574-6968.2009.01618.x.CrossRefPubMedGoogle Scholar
- 57.Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA. 2012;109(16):6241–6. https://doi.org/10.1073/pnas.1117018109.CrossRefPubMedGoogle Scholar
- 58.Toju H, Tanabe AS, Yamamoto S, Sato H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE. 2012;7(7):e40863. https://doi.org/10.1371/journal.pone.0040863.CrossRefPubMedGoogle Scholar
- 59.Seifert KA. Progress towards DNA barcoding of fungi. Mol Ecol Resour. 2009;9(Suppl s1):83–9. https://doi.org/10.1111/j.1755-0998.2009.02635.x.CrossRefPubMedGoogle Scholar
- 60.Xu J. Fungal DNA barcoding. Genome. 2016;59(11):913–32. https://doi.org/10.1139/gen-2016-0046.CrossRefPubMedGoogle Scholar
- 61.Estrada-Barcenas DA, Vite-Garin T, Navarro-Barranco H, de la Torre-Arciniega R, Perez-Mejia A, Rodriguez-Arellanes G, et al. Genetic diversity of Histoplasma and Sporothrix complexes based on sequences of their ITS1-5.8S-ITS2 regions from the BOLD system. Rev Iberoam Micol. 2014;31(1):90–4. https://doi.org/10.1016/j.riam.2013.10.003.CrossRefPubMedGoogle Scholar
- 62.Sasaki AA, Fernandes GF, Rodrigues AM, Lima FM, Marini MM, Dos S Feitosa L, de Melo TM, Felipe MS, da Silveira JF, de Camargo ZP. Chromosomal polymorphism in the Sporothrix schenckii complex. PLoS ONE. 2014;9(1):86819. https://doi.org/10.1371/journal.pone.0086819.CrossRefGoogle Scholar
- 63.Rodrigues AM, de Hoog GS, de Cassia PD, Brihante RS, Sidrim JJ, Gadelha MF, Colombo AL, de Camargo ZP. Genetic diversity and antifungal susceptibility profiles in causative agents of sporotrichosis. BMC Infect Dis. 2014;14:219. https://doi.org/10.1186/1471-2334-14-219.CrossRefPubMedGoogle Scholar
- 64.Marimon R, Serena C, Gene J, Cano J, Guarro J. In vitro antifungal susceptibilities of five species of Sporothrix. Antimicrob Agents Chemother. 2008;52(2):732–4. https://doi.org/10.1128/AAC.01012-07.CrossRefPubMedGoogle Scholar
- 65.Espinel-Ingroff A, Abreu DPB, Almeida-Paes R, Brilhante RSN, Chakrabarti A, Chowdhary A, et al. Multicenter, international study of MIC/MEC distributions for definition of epidemiological cutoff values for Sporothrix species identified by molecular methods. Antimicrob Agents Chemother. 2017. https://doi.org/10.1128/aac.01057-1.Google Scholar
- 66.Córdoba S, Isla G, Szusz W, Vivot W, Hevia A, Davel G, et al. Molecular identification and susceptibility profile of Sporothrix schenckii sensu lato isolated in Argentina. Mycoses. 2018;61(7):441–8. https://doi.org/10.1111/myc.12760.CrossRefPubMedGoogle Scholar