Antifungal Susceptibility Profile of Candida Albicans Isolated from Vulvovaginal Candidiasis in Xinjiang Province of China

  • Liang Yan
  • Xiao-dong Wang
  • Seyedmojtaba Seyedmousavi
  • Juan-na Yuan
  • Palida Abulize
  • Wei-hua Pan
  • Nong Yu
  • Ya-li Yang
  • Hai-qing Hu
  • Wan-qing LiaoEmail author
  • Shu-wen DengEmail author
Original Paper


We investigated the antifungal susceptibility profiles of 207 independent Candida albicans strains isolated from patients with vulvovaginal candidiasis (VVC) in Xinjiang Province of China. Using CLSI M27-A3 and M27-S4 guidelines, anidulafungin and micafungin were the most active drugs against C. albicans showing an MIC50/MIC90 corresponding to 0.016/0.0313 µg/mL, followed by caspofungin (0.25/0.25 µg/mL), posaconazole (0.125/0.5 µg/mL), ravuconazole (0.063/1 µg/mL), itraconazole (0.125/1 µg/mL), amphotericine B (0.5/1 µg/mL), isavuconazole (0.063/2 µg/mL), 5-flucytosine (1/2 µg/mL), voriconazole (0.125/4 µg/mL), and fluconazole (0.5/4 µg/mL). 96.1% (199)–100.0% (207) isolates were sensitive to the three echinocandins tested, amphotericine B and 5-flucytosine. The in vitro activity of triazoles against all isolates tested was variable; itraconazole and voriconazole had reduced the activity to almost half of the isolates (55.1% (114) and 51.2% (106) susceptible, respectively). Fluconazole was active against 76.3% (158) isolates tested. The new triazoles ravuconazole, isavuconazole and posaconazole showed good in vitro potency against 89.9% (186)–95.2% (197) of isolates with the geometric mean MIC (µg/mL) of 0.10, 0.12 and 0.14 µg/mL, respectively. In conclusion, our study indicates that for effective management of systemic candidiasis in Xinjiang Province of China, it is important to determine the susceptibility profiles of isolated C. albicans from patients with VVC.


Antifungal susceptibility Candida albicans Vulvovaginal candidiasis Xinjiang Province 



This study was supported by Suzhou New & Hi-Tech IDZ grant 2017Z008, in part by Shanghai Science Foundation of China under Grant 16DZ0500401. Seyedmojtaba Seyedmousavi is presently supported by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

11046_2018_305_MOESM1_ESM.pdf (86 kb)
Supplementary material 1 (PDF 86 kb)


  1. 1.
    Hurley R, de Louvois J. Candida vaginitis. Postgrad Med J. 1979;55:645.CrossRefGoogle Scholar
  2. 2.
    Achkar JM, Fries BC. Candida infections of the genitourinary tract. Clin Microbiol Rev. 2010;23:253–73.CrossRefGoogle Scholar
  3. 3.
    Sobel JD. Vulvovaginal candidosis. Lancet. 2007;369:1961–71.CrossRefGoogle Scholar
  4. 4.
    Ying C, Zhang H, Tang Z, Chen H, Gao J, Yue C. Antifungal susceptibility and molecular typing of 115 Candida albicans isolates obtained from vulvovaginal candidiasis patients in 3 Shanghai maternity hospitals. Med Mycol. 2016;54:394–9.CrossRefGoogle Scholar
  5. 5.
    Gamarra S, Morano S, Dudiuk C, Mancilla E, Nardin ME, de los Angeles Méndez E, et al. Epidemiology and antifungal susceptibilities of yeasts causing vulvovaginitis in a teaching hospital. Mycopathologia. 2014;178:251–8.CrossRefGoogle Scholar
  6. 6.
    Nagashima M, Yamagishi Y, Mikamo H. Antifungal susceptibilities of Candida species isolated from the patients with vaginal candidiasis. J Infect Chemother. 2016;22:124–6.CrossRefGoogle Scholar
  7. 7.
    Güzel A, Küçükgöz-Güleç Ü, Aydin M, Gümral R, Kalkanci A, Ilkit M. Candida vaginitis during contraceptive use: the influence of methods, antifungal susceptibility and virulence patterns. J Obstet Gynaecol. 2013;33:850–6.CrossRefGoogle Scholar
  8. 8.
    De Pádua RF, Guilhermetti E, Svidzinski TE. In vitro activity of antifungal agents on yeasts isolated from vaginal secretion. Acta Scientiarum. 2003;25:51–4.Google Scholar
  9. 9.
    Kalkanci A, Güzel A, Jabban I, Aydin M, Ilkit M, Kuştimur S. Candida vaginitis in non-pregnant patients: a study of antifungal susceptibility testing and virulence factors. J Obstet Gynaecol. 2013;33:378–83.CrossRefGoogle Scholar
  10. 10.
    Kalkanci A, Güzel AB, Khalil IIJ, Aydin M, Ilkit M, Kuştimur S. Yeast vaginitis during pregnancy: susceptibility testing of 13 antifungal drugs and boric acid and the detection of four virulence factors. Med Mycol. 2012;50:585–93.CrossRefGoogle Scholar
  11. 11.
    Brandolt TM, Klafke GB, Gonçalves CV, Bitencourt LR, Martinez AMBd, Mendes JF, et al. Prevalence of Candida spp. in cervical-vaginal samples and the in vitro susceptibility of isolates. Braz. J Microbiol. 2017;48:145–50.Google Scholar
  12. 12.
    Richter SS, Galask RP, Messer SA, Hollis RJ, Diekema DJ, Pfaller MA. Antifungal susceptibilities of Candida species causing vulvovaginitis and epidemiology of recurrent cases. J Clin Microbiol. 2005;43:2155–62.CrossRefGoogle Scholar
  13. 13.
    Dota KFD, Consolaro MEL, Svidzinski TIE, Bruschi ML. Antifungal activity of Brazilian propolis microparticles against yeasts isolated from vulvovaginal candidiasis. Evid-Based Complement Altern. 2011;2011:201953.Google Scholar
  14. 14.
    Ge SH, Wan Z, Li J, Xu J, Li RY, Bai FY. Correlation between azole susceptibilities, genotypes, and ERG11 mutations in Candida albicans isolates associated with vulvovaginal candidiasis in China. Antimicrob Agents Chemother. 2010;54:3126–31.CrossRefGoogle Scholar
  15. 15.
    Zhang JY, Liu JH, Liu FD, Xia YH, Wang J, Liu X, et al. Vulvovaginal candidiasis: species distribution, fluconazole resistance and drug efflux pump gene overexpression. Mycoses. 2014;57:584–91.CrossRefGoogle Scholar
  16. 16.
    Asticcioli S, Sacco L, Daturi R, Matti C, Nucleo E, Zara F, et al. Trends in frequency and in vitro antifungal susceptibility patterns of Candida isolates from women attending the STD outpatients clinic of a tertiary care hospital in Northern Italy during the years 2002-2007. New Microbiol. 2009;32:199–204.PubMedGoogle Scholar
  17. 17.
    Dias LB. Melhem MdSC, Szeszs MW, Meirelles Filho J, Hahn RC. Vulvovaginal candidiasis in Mato Grosso, Brazil: pregnancy status, causative species and drugs tests. Braz. J Microbiol. 2011;42:1300–7.Google Scholar
  18. 18.
    Ozcan SK, Budak F, Yucesoy G, Susever S, Willke A. Prevalence, susceptibility profile and proteinase production of yeasts causing vulvovaginitis in Turkish women. APMIS. 2006;114:139–45.CrossRefGoogle Scholar
  19. 19.
    Fan SR, Liu XP, Li JW. Clinical characteristics of vulvovaginal candidiasis and antifungal susceptibilities of Candida species isolates among patients in southern China from 2003 to 2006. J Obstet Gynaecol Res. 2008;34:561–6.CrossRefGoogle Scholar
  20. 20.
    Liu X, Fan S, Peng Y, Zhang H. Species distribution and susceptibility of Candida isolates from patient with vulvovaginal candidiasis in Southern China from 2003 to 2012. J Mycol Med. 2014;24:106–11.CrossRefGoogle Scholar
  21. 21.
    Wang FJ, Zhang D, Liu ZH, Wu WX, Bai HH, Dong HY. Species distribution and in vitro antifungal susceptibility of vulvovaginal Candida isolates in China. Chin Med J Peking. 2016;129:1161–5.CrossRefGoogle Scholar
  22. 22.
    Shi XY, Yang YP, Zhang Y, Li W, Wang JD, Huang WM. Molecular identification and antifungal susceptibility of 186 Candida isolates from vulvovaginal candidiasis in southern China. J Med Microbiol. 2015;64:390–3.CrossRefGoogle Scholar
  23. 23.
    Pfaller MA, Diekema DJ. Progress in antifungal susceptibility testing of Candida spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods 2010 to 2012. J Clin Microbiol. 2010;2012(50):2846–56.Google Scholar
  24. 24.
    Kurtzman C, Robnett C. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol. 1997;35:1216–23.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd edition; Document M27-A3. 2008.Google Scholar
  26. 26.
    Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: 4th Informational Supplement-CLSI Document M27-S4-Wayne, PA. 2012.Google Scholar
  27. 27.
    Katiyar S, Pfaller M, Edlind T. Candida albicans and Candida glabrata clinical isolates exhibiting reduced echinocandin susceptibility. Antimicrob Agents Chemother. 2006;50:2892–4.CrossRefGoogle Scholar
  28. 28.
    Pappas PG, Kauffman CA, Andes D, Benjamin DK, Calandra TF, Edwards JE, et al. Clinical practice guidelines for the management candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;48:503–35.CrossRefGoogle Scholar
  29. 29.
    Boikov DA, Locke JB, James KD, Bartizal K, Sobel JD. In vitro activity of the novel echinocandin CD101 at pH 7 and 4 against Candida spp. isolates from patients with vulvovaginal candidiasis. J Antimicrob Chemother. 2017;72:1355–8.CrossRefGoogle Scholar
  30. 30.
    Sharifynia S, Rezaie S, Mohamadnia A, Mortezaee V, Hadian A, Seyedmousavi S. Genetic diversity and antifungal susceptibility of Candida albicans isolated from Iranian patients. Med Mycol. 2019;57:127–31.CrossRefGoogle Scholar
  31. 31.
    Pfaller M, Boyken L, Hollis R, Messer S, Tendolkar S, Diekema D. Global surveillance of in vitro activity of micafungin against Candida: a comparison with caspofungin by CLSI-recommended methods. J Clin Microbiol. 2006;44:3533–8.CrossRefGoogle Scholar
  32. 32.
    Pfaller M, Boyken L, Hollis R, Kroeger J, Messer S, Tendolkar S, et al. In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin: six years of global surveillance. J Clin Microbiol. 2008;46:150–6.CrossRefGoogle Scholar
  33. 33.
    Lin XY, Wang SL, Duan XL, Lan CG, Chen XJ, Xue J, et al. Review of clinical experience in itraconazole therapy for 10 years in China. J Clin Dermatol. 2003;32:429–30 (in Chinese).Google Scholar
  34. 34.
    Lyon GM, Karatela S, Sunay S, Adiri Y. Antifungal susceptibility testing of Candida isolates from the Candida surveillance study. J Clin Microbiol. 2010;48:1270–5.CrossRefGoogle Scholar
  35. 35.
    Seifert H, Aurbach U, Stefanik D, Cornely O. In vitro activities of isavuconazole and other antifungal agents against Candida bloodstream isolates. Antimicrob Agents Chemother. 2007;51:1818–21.CrossRefGoogle Scholar
  36. 36.
    Castanheira M, Messer SA, Rhomberg PR, Dietrich RR, Jones RN, Pfaller MA. Isavuconazole and nine comparator antifungal susceptibility profiles for common and uncommon Candida species collected in 2012: application of new CLSI clinical breakpoints and epidemiological cutoff values. Mycopathologia. 2014;178:1–9.CrossRefGoogle Scholar
  37. 37.
    Pfaller M, Diekema D, Messer S, Boyken L, Huynh H, Hollis R. Clinical evaluation of a frozen commercially prepared microdilution panel for antifungal susceptibility testing of seven antifungal agents, including the new triazoles posaconazole, ravuconazole, and voriconazole. J Clin Microbiol. 2002;40:1694–7.CrossRefGoogle Scholar
  38. 38.
    Pfaller M, Messer S, Hollis R, Jones R, Diekema D. In vitro activities of ravuconazole and voriconazole compared with those of four approved systemic antifungal agents against 6,970 clinical isolates of Candida spp. Antimicrob Agents Chemother. 2002;46:1723–7.CrossRefGoogle Scholar
  39. 39.
    Sims CR, Paetznick VL, Rodriguez JR, Chen E, Ostrosky-Zeichner L. Correlation between microdilution, E-test, and disk diffusion methods for antifungal susceptibility testing of posaconazole against Candida spp. J Clin Microbiol. 2006;44:2105–8.CrossRefGoogle Scholar
  40. 40.
    Pfaller M, Diekema D, Jones R, Sader HS, Fluit A, Hollis R, et al. International surveillance of bloodstream infections due to Candida species: frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole, and voriconazole of isolates collected from 1997 through 1999 in the SENTRY antimicrobial surveillance program. J Clin Microbiol. 2001;39:3254–9.CrossRefGoogle Scholar
  41. 41.
    Pfaller M, Messer S, Boyken L, Rice C, Tendolkar S, Hollis R, et al. Cross-resistance between fluconazole and ravuconazole and the use of fluconazole as a surrogate marker to predict susceptibility and resistance to ravuconazole among 12,796 clinical isolates of Candida spp. J Clin Microbiol. 2004;42:3137–41.CrossRefGoogle Scholar
  42. 42.
    Pfaller MA, Messer SA, Rhomberg PR, Jones RN, Castanheira M. In vitro activity of isavuconazole and comparator antifungal agents tested against a global collection of opportunistic yeasts and moulds. J Clin Microbiol. 2013;51:2608–16.CrossRefGoogle Scholar
  43. 43.
    Guinea J, Peláez T, Recio S, Torres-Narbona M, Bouza E. In vitro antifungal activities of isavuconazole (BAL4815), voriconazole, and fluconazole against 1,007 isolates of Zygomycete, Candida, Aspergillus, Fusarium, and Scedosporium species. Antimicrob Agents Chemother. 2008;52:1396–400.CrossRefGoogle Scholar
  44. 44.
    Marcos Arias C, Eraso E, Madariaga L, Carrillo Muñoz AJ, Quindós G. In vitro activities of new triazole antifungal agents, posaconazole and voriconazole, against oral Candida isolates from patients suffering from denture stomatitis. Mycopathologia. 2012;73:35–46.CrossRefGoogle Scholar
  45. 45.
    Pfaller M, Messer S, Boyken L, Hollis R, Rice C, Tendolkar S, et al. In vitro activities of voriconazole, posaconazole, and fluconazole against 4,169 clinical isolates of Candida spp. and Cryptococcus neoformans collected during 2001 and 2002 in the ARTEMIS global antifungal surveillance program. Diagn Microbiol Infect Dis. 2004;48:201–5.CrossRefGoogle Scholar
  46. 46.
    Danby CS, Boikov D, Rautemaa-Richardson R, Sobel JD. Effect of pH on in vitro susceptibility of Candida glabrata and Candida albicans to 11 antifungal agents and implications for clinical use. Antimicrob Agents Chemother. 2012;56:1403–6.CrossRefGoogle Scholar
  47. 47.
    Alfouzan W, Dhar R, Ashkanani H, Gupta M, Rachel C, Khan Z. Species spectrum and antifungal susceptibility profile of vaginal isolates of Candida in Kuwait. J Mycol Med. 2015;25:23–8.CrossRefGoogle Scholar
  48. 48.
    Laverdiere M, Hoban D, Restieri C, Habel F. In vitro activity of three new triazoles and one echinocandin against Candida bloodstream isolates from cancer patients. J Antimicrob Chemother. 2002;50:119–23.CrossRefGoogle Scholar
  49. 49.
    Ribeiro M, Dietze R, Paula C, Da Matta D, Colombo A. Susceptibility profile of vaginal yeast isolates from Brazil. Mycopathologia. 2001;151:5–10.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.The People’s Hospital of Suzhou National New & Hi-Tech Industrial Development ZoneSuzhouChina
  2. 2.Shanghai Key Laboratory of Medical Molecular Mycology & PLA Key Laboratory of Fungal Disease, Department of Dermatology, Changzheng HospitalSecond Military Medical UniversityShanghaiChina
  3. 3.Wuhan General Hospital of Chinese PLAWuhanChina
  4. 4.The First Affiliated Hospital of Xinjiang Medical UniversityÜrümqiChina
  5. 5.Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaUSA
  6. 6.Center of Expertise in Microbiology, Infection Biology and Antimicrobial PharmacologyTehranIran
  7. 7.Invasive Fungi Research Center, School of MedicineMazandaran University of Medical SciencesSariIran
  8. 8.The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangdong Provincial Hospital of Chinese MedicineGuangzhouChina
  9. 9.Department of Laboratory Medicine, Changzheng HospitalSecond Military Medical UniversityShanghaiChina

Personalised recommendations