Advertisement

Multi-scale RoIs selection for classifying multi-spectral images

  • Ayan SealEmail author
  • Angel Garcia-Pedrero
  • Debotosh Bhattacharjee
  • Mita Nasipuri
  • Mario Lillo-Saavedra
  • Ernestina Menasalvas
  • Consuleo Gonzalo-Martin
Article
  • 15 Downloads

Abstract

The applications of object-based image analysis (OBIA) in remote sensing studies have received a considerable amount of attention over the recent decade due to dramatically increasing of the spatial resolution of satellite imaging sensors for earth observation. In this study, an unsupervised methodology based on OBIA paradigm for the estimation of multi-scale training sets for land cover classification is proposed. The proposed method consists of selection of valid region of interests in an unsupervised way and its characterization using some attributes in order to form meaningful and reliable training sets for supervised classification of different land covers of a satellite image. Multi-scale image segmentation is a prerequisite step for estimation of multi-scale training sets. However, scale selection remains a challenge in multi-scale segmentation. In this work, we propose a method to determine the appropriate segmentation scale for each land cover with the help of prior knowledge in the form of in-situ data. The proposed method is further discussed and validated through multi-scale segmentation using quick shift and random forest algorithms on two multi-spectral images captured using Worldview-2 sensor. Experimental results indicate that the proposed method qualitatively and quantitatively outperforms three state-of-the-art methods.

Keywords

Object based image analysis Multi-scale RoIs Quick shift Random forest 

Notes

Acknowledgements

A. Seal is thankful to MeiTY, Govt. of India for proving him Young Faculty Research Fellowship under Visvesvaraya PhD Scheme for Electronics and IT. This work has been partially funded by the Water Research Center For Agriculture and Mining, CRHIAM (CONICYT-FONDAP-1513001).

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Susstrunk, S. (2012). SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11), 2274–2282.CrossRefGoogle Scholar
  2. Aplin, P., & Smith, G. M. (2008). Advances in object-based image classification. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 725–728.Google Scholar
  3. Baatz, M., & Shape, A. (2000). Multiresolution segmentation-an optimization approach for high quality multi-scale image segmentation. http://www.agit.at/papers/2000/baatz_FP_12.pdf
  4. Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3), 239–258.CrossRefGoogle Scholar
  5. Bhattarai, N., Quackenbush, L. J., Calandra, L., Im, J., & Teale, S. (2011). Spectral analysis of scotch pine infested by SirexNoctilio. In ASPRS annual conference, Milwaukee, Wisconsin.Google Scholar
  6. Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16.CrossRefGoogle Scholar
  7. Blaschke, T., Burnett, C., & Pekkarinen, A. (2004). Image segmentation methods for object-based analysis and classification. In S. M. De Jong & F. D. Van der Meer (Eds.), Remote sensing image analysis: Including the spatial domain (pp. 211–236). Dordrecht: Springer.CrossRefGoogle Scholar
  8. Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., et al. (2010). Geographic object-based image analysis—Towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 180–191.CrossRefGoogle Scholar
  9. Blaschke, T., & Lang, S. (2006). Object based image analysis for automated information extraction—A synthesis. In Measuring the Earth II ASPRS fall conference, San Antonio, Texas (pp. 6–10).Google Scholar
  10. Blaschke, T., Lang, S., & Hay, G. (2008). Object-based image analysis: Spatial concepts for knowledge-driven remote sensing applications. Berlin: Springer.CrossRefGoogle Scholar
  11. Blaschke, T., & Strobl, J. (2001). What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. GeoBIT/GIS, 6, 12–17.Google Scholar
  12. Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.zbMATHGoogle Scholar
  13. Breiman, L. (2000). Some infinity theory for predictor ensembles. In Technical Report 579. Statistics Department, UCB.Google Scholar
  14. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.zbMATHCrossRefGoogle Scholar
  15. Breiman, L. (2004). Consistency for a simple model of random forests. Technical Report 670. https://www.stat.berkeley.edu/~breiman/RandomForests/consistencyRFA.pdf. Accessed 6 Oct 2019.
  16. Breiman, L. (2017). Classification and regression trees. London: Routledge.CrossRefGoogle Scholar
  17. Carleer, A. P., Debeir, O., & Wolff, E. (2005). Assessment of very high spatial resolution satellite image segmentations. Photogrammetric Engineering & Remote Sensing, 71(11), 1285–1294.CrossRefGoogle Scholar
  18. Castilla, G., & Hay, G. J. (2008). Image objects and geographic objects. In T. Blaschke, S. Lang, & G. J. Hay (Eds.), Object-based image analysis (pp. 91–110). Berlin: Springer.Google Scholar
  19. Dey, V., Zhang, Y., & Zhong, M. (2010). A review on image segmentation techniques with remote sensing perspective. In ISPRS TC VII symposium (Vol. 38, pp. 31–42).Google Scholar
  20. Drăguţ, L., Csillik, O., Eisank, C., & Tiede, D. (2014). Automated parameterisation for multiscale image segmentation on multiple layers. ISPRS Journal of Photogrammetry and Remote Sensing, 88, 119–127.CrossRefGoogle Scholar
  21. Drăguţ, L., Eisank, C., & Strasser, T. (2011). Local variance for multiscale analysis in geomorphometry. Geomorphology, 130(3), 162–172.CrossRefGoogle Scholar
  22. Drăguţ, L., Tiede, D., & Levick, S. R. (2010). ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. International Journal of Geographical Information Science, 249(6), 859–871.CrossRefGoogle Scholar
  23. Dungan, J. L., Perry, J. N., Dale, M. R. T., Legendre, P., Citron-Pousty, S., Fortin, M. J., et al. (2002). A balanced view of scale in spatial statistical analysis. Ecography, 25, 626–640.CrossRefGoogle Scholar
  24. Duro, D. C., Franklin, S. E., & Dube, M. G. (2012). A comparison of pixel based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sensing Environment, 118(6), 259–272.CrossRefGoogle Scholar
  25. Espindola, G. M., Camara, G., Reis, I. A., Bins, L. S., & Monteiro, A. M. (2006). Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation. International Journal of Remote Sensing, 27(14), 3035–3040.CrossRefGoogle Scholar
  26. Fisher, P. (1997). The pixel: A snare and a delusion. International Journal of Remote Sensing, 18(3), 679–685.CrossRefGoogle Scholar
  27. Fukunaga, K., & Hostler, L. D. (1975). The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on information theory, 21(1), 32–40.MathSciNetzbMATHCrossRefGoogle Scholar
  28. Gao, B. C. (1996). NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266.MathSciNetCrossRefGoogle Scholar
  29. Gao, Y., & Mas, J. F. (2008). A comparison of the performance of pixel-based and object-based classifications over images with various spatial resolutions. Online Journal of Earth Sciences, 2(1), 27–35.Google Scholar
  30. Garcia-Pedrero, A., Gonzalo-Martin, C., Fonseca-Luengo, D., & Lillo-Saavedra, M. (2015). A GEOBIA methodology for fragmented agricultural landscapes. Remote Sensing, 7(1), 767–787.CrossRefGoogle Scholar
  31. Geerken, R., Zaitchik, B., & Evans, J. P. (2005). Classifying rangeland vegetation type and coverage from NDVI time series using Fourier Filtered Cycle Similarity. International Journal of Remote Sensing, 26(24), 5535–5554.CrossRefGoogle Scholar
  32. Geiß, C., Klotz, M., Schmitt, A., & Taubenböck, H. (2016). Object-based morphological profiles for classification of remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 54(10), 5952–5963.CrossRefGoogle Scholar
  33. Gholoobi, M., Tayyebi, A., Taleyi, M., & Tayyebi, A. H. (2010). Comparing pixel based and object based approaches in land use classification in mountainous areas. In International archives of the photogrammetry, remote sensing and spatial information science, Kyoto, Japan (Vol. 38).Google Scholar
  34. Gonzalo-Martín, C., Lillo-Saavedra, M., Gómez-Carpintero, J., García-Pedrero, Á. M., & Menasalvas, E. (2013). Unsupervised multi-scale ROIs determination for supervised thematic classification. Towards Horizon, 2020, 783–790.Google Scholar
  35. Hay, G. J., & Marceau, D. J. (2004). Multiscale object-specific analysis (MOSA): An integrative approach for multiscale landscape analysis. In S. M. De Jong & F. D. Van der Meer (Eds.), Remote sensing image analysis: Including the spatial domain (pp. 71–92). Dordrecht: Springer.CrossRefGoogle Scholar
  36. Huang, X., & Zhang, L. (2008). An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 46(12), 4173–4185.CrossRefGoogle Scholar
  37. Johnson, B., & Xie, Z. (2011). Unsupervised image segmentation evaluation and refinement using a multi-scale approach. ISPRS Journal of Photogrammetry and Remote Sensing, 66(4), 473–483.CrossRefGoogle Scholar
  38. Karl, J. W., & Maurer, B. A. (2010). Spatial dependence of predictions from image segmentation: A variogram-based method to determine appropriate scales for producing land-management information. Ecological Informatics, 5(3), 194–202.CrossRefGoogle Scholar
  39. Karlekar, A., Seal, A., Krejcar, O., & Gonzalo-Martin, C. (2019). Fuzzy k-means using non-linear s-distance. IEEE Access, 7, 55121–55131.  https://doi.org/10.1109/ACCESS.2019.2910195.CrossRefGoogle Scholar
  40. Kim M., Madden M., & Warner T. (2008) Estimation of optimal image object size for the segmentation of forest stands with multispectral IKONOS imagery. In T. Blaschke, S. Lang, & G. J. Hay (Eds.), Object-based image analysis. Lecture notes in geoinformation and cartography. Berlin, Heidelberg: Springer.Google Scholar
  41. Kurtz, C., Passata, N., Gançarskia, P., & Puissantb, A. (2012). Extraction of complex patterns from multiresoltion remote sensing images: A hierarchical top-down methodology. Pattern Recognition, 45(2), 685–706.CrossRefGoogle Scholar
  42. Meinel, G., & Neubert, M. (2004). A comparison of segmentation programs for high resolution remote sensing data. International Archives of Photogrammetry and Remote Sensing, 35, 1097–1105.Google Scholar
  43. Ming, D., Cai, H., Li, L., Qiao, C., & Du, J. (2012). Semivariogram-based spatial bandwidth selection for remote sensing image segmentation with mean-shift algorithm. IEEE Geoscience and Remote Sensing Letters, 9(5), 813–817.CrossRefGoogle Scholar
  44. Ming, D., Li, J., Wang, J., & Zhang, M. (2015). Scale parameter selection by spatial statistics for GeOBIA: Using mean-shift based multi-scale segmentation as an example. ISPRS Journal of Photogrammetry and Remote Sensing, 106, 28–41.CrossRefGoogle Scholar
  45. Ming, D., & Zhang, X. (2016). Cropland extraction based on OBIA and adaptive scale pre-estimation. Photogrammetric Engineering and Remote Sensing, 82(8), 635–664.CrossRefGoogle Scholar
  46. Mohan, B. K., & Ladha, S. N. (2009). Comparison of object based and pixel based classification of high resolution satellite images using artificial neural networks. In National symposium on security and soft computing. Mumbai: IIT Bombay.Google Scholar
  47. Powers, D. M. (2011). Evaluation: From precision, recall and F-measure to ROC informedness, markedness & correlation. Journal of Machine Learning Technologies, 2(1), 37–63.MathSciNetGoogle Scholar
  48. Quiles, M. G., Wang, D. L., Zhao, L., Romero, R. A. F., & Huang, D. S. (2011). Selecting salient objects in real scenes: An oscillatory correlation model. Neural Networks, 24, 54–64.CrossRefGoogle Scholar
  49. Seal, A., Bhattacharjee, D., & Nasipuri, M. (2016). Human face recognition using random forest based fusion of à-trous wavelet transform coefficients from thermal and visible images. AEU-International Journal of Electronics and Communications, 70(8), 1041–1049.CrossRefGoogle Scholar
  50. Seal, A., Bhattacharjee, D., Nasipuri, M., & Basu, D. K. (2015). UGC-JU face database and its benchmarking using linear regression classifier. Multimedia Tools and Applications, 74(9), 2913–2937.CrossRefGoogle Scholar
  51. Shapire, R., Freund, Y., Bartlett, P., & Lee, W. (1997). Boosting the margin: A new 395 explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5), 1651–1686.zbMATHGoogle Scholar
  52. Sharma, K. K., & Seal, A. (2019). Modeling uncertain data using Monte Carlo integration method for clustering. Expert Systems with Applications, 137, 100–116.CrossRefGoogle Scholar
  53. Sheikh, Y. A., Khan, E. A., & Kanade, T. (2007) . Mode-seeking by medoidshifts. In 2007 IEEE 11th international conference on computer vision (pp. 1–8).Google Scholar
  54. Tan, P. N. (2018). Introduction to data mining. Noida: Pearson Education.Google Scholar
  55. Trias-Sanz, R., Stamon, G., & Louchet, J. (2008). Using colour, texture, and hierarchical segmentation for high-resolution remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 63(2), 156–168.CrossRefGoogle Scholar
  56. UcaAvci, Z. D., Karaman, M., Ozelkan, E., & Papila, I. (2011). A comparison of pixel-based and object-based classification methods, a case study: Istanbul, Turkey. In 34th International symposium on remote sensing of environment, Sydney.Google Scholar
  57. Vedaldi, A., & Soatto, S. (2008). Quick shift and kernel methods for mode seeking. ECCV, Part IV. In European conference on computer vision, Springer, Berlin, Heidelberg (pp. 705–718).Google Scholar
  58. Wang, M., Dong, Z., Cheng, Y., & Li, D. (2018). Optimal segmentation of high-resolution remote sensing image by combining superpixels with the minimum spanning tree. IEEE Transactions on Geoscience and Remote Sensing, 56(1), 228–238.CrossRefGoogle Scholar
  59. Whiteside, T., & Ahmad, W. (2005) . A comparison of object-oriented and pixel-based classification methods for mapping land cover in Northern Australia. In Proceedings of SSC2005 spatial intelligence, innovation and praxis: The National Biennial Conference of the Spatial Sciences Institute.Google Scholar
  60. Witharana, C., & Civco, D. L. (2014). Optimizing multi-resolution segmentation scale using empirical methods: Exploring the sensitivity of the supervised discrepancy measure Euclidean distance 2 (ED2). ISPRS Journal of Photogrammetry and Remote Sensing, 88, 108–121.CrossRefGoogle Scholar
  61. Woodcock, C. E., & Strahler, A. H. (1987). The factor of scale in remote sensing. Remote Sensing of Environment, 21(3), 311–332.CrossRefGoogle Scholar
  62. Zhang, H., Fritts, J. E., & Goldman, S. A. (2008). Image segmentation evaluation: A survey of unsupervised methods. Computer Vision and Image Understanding, 110(2), 260–280.CrossRefGoogle Scholar
  63. Zhou, Y., Li, J., Feng, L., Zhang, X., & Hu, X. (2017). Adaptive scale selection for multiscale segmentation of satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(8), 3641–3651.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.PDPM Indian Institute of Information Technology, Design and ManufacturingJabalpurIndia
  2. 2.Center for Biomedical TechnologyUniversidad Politécnica de MadridPozuelo de AlarcónSpain
  3. 3.Jadavpur UniversityKolkataIndia
  4. 4.Universidad de ConcepciónConcepcionChile

Personalised recommendations