Multidimensional Systems and Signal Processing

, Volume 30, Issue 1, pp 493–502

# On minor prime factorizations for multivariate polynomial matrices

Article

## Abstract

Multivariate polynomial matrix factorizations have been widely investigated during the past years due to the fundamental importance in the areas of multidimensional systems and signal processing. In this paper, minor prime factorizations for multivariate polynomial matrices are studied. We give a necessary and sufficient condition for the existence of a minor left prime factorization for a multivariate polynomial matrix. This result is a generalization of a theorem in Wang and Kwong (Math Control Signals Syst 17(4):297–311, 2005). On the basis of this result and a method in Fabiańska and Quadrat (Radon Ser Comp Appl Math 3:23–106, 2007), we give an algorithm to decide if a multivariate polynomial matrix has minor left prime factorizations and compute one if they exist.

## Keywords

Multidimensional systems Multivariate polynomial matrices Matrix factorizations Minor prime factorizations

## References

1. Adams, W. W., & Loustaunau, P. (1994). An introduction to Gröbner bases. Providence: American Mathematical Society.
2. Bose, N. K., Buchberger, B., & Guiver, J. P. (2003). Applied multidimensional systems theory. Dordrecht: Kluwer.Google Scholar
3. Brown, W. C. (1993). Matrices over commutative rings. New York: Marcel Dekker Inc.
4. Decker, W., Greuel, G. M., Pfister, G., & Schönemann, H. (2015). Singular 4-0-2—A computer algebra system for polynomial computations. http://www.singular.uni-kl.de. Accessed 20 Dec 2016.
5. Eisenbud, D. (2013). Commutative algebra: with a view toward algebraic geometry. New York: Springer.
6. Fabiańska, A., & Quadrat, A. (2007). Applications of the Quillen-Suslin theorem to multidimensional systems theory. Radon Series Computational and Applied Mathematics, 3, 23–106.
7. Fornasini, E., & Valcher, M. E. (1997). $$n$$-D polynomial matrices with applications to multidimensional signal analysis. Multidimensional Systems and Signal Process, 29, 387–408.
8. Guiver, J. P., & Bose, N. K. (1982). Polynomial matrix primitive factorization over arbitrary coefficient field and related results. IEEE Transactions on Circuits and Systems CAS, 29(10), 649–657.
9. Lin, Z. (1999). Notes on $$n$$-D polynomial matrix factorization. Multidimensional Systems and Signal Process., 10(4), 379–393.
10. Lin, Z., & Bose, N. K. (2001). A generalization of Serre’s conjecture and some related issues. Linear Algebra and its Applications, 338, 125–138.
11. Lin, Z., Xu, L., & Fan, H. (2005). On minor prime factorization for $$n$$-D polynomial matrices. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(9), 568–571.
12. Liu, J., & Wang, M. (2015). Further remarks on multivariate polynomial matrix factorizations. Linear Algebra and its Applications, 465, 204–213.
13. Matsumura, H., & Reid, M. (1989). Commutative ring theory. Cambridge: Cambridge University Press.Google Scholar
14. Morf, M., Levy, B. C., & Kung, S. Y. (1977). New results in 2-D systems theory, Part I: 2-D polynomial matrices, factorization, and coprimeness. Proceedings of the IEEE, 65(4), 861–872.
15. Pommaret, J. F. (2001). Solving Bose conjecture on linear multidimensional systems. In Proceedings of the European control conference (pp. 1853–1855).Google Scholar
16. Pommaret, J. F., & Quadrat, A. (1999). Algebraic analysis of linear multidimensional control systems. IMA Journal of Mathematical Control and Information, 16, 275–297.
17. Quadrat, A. (2003). The fractional representation approach to synthesis problems: An algebraic analysis viewpoint part I: (Weakly) doubly coprime factorizations. SIAM Journal on Control and Optimization, 42(1), 266–299.
18. Quadrat, A. (2013). Grade filtration of linear functional systems. Acta Applicandae Mathematicae, 127, 27–86.
19. Rotman, J. J. (2008). An introduction to homological algebra. New York: Springer.
20. Srinivas, V. (2004). A generalized Serre problem. Journal of Algebra, 278(2), 621–627.
21. Wang, M. (2007). On factor prime factorizations for $$n$$-D polynomial matrices. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(6), 1398–1405.
22. Wang, M., & Feng, D. (2004). On Lin–Bose problem. Linear Algebra and its Applications, 390, 279–285.
23. Wang, M., & Kwong, C. P. (2005). On multivariate polynomial matrix factorization problems. Mathematics of Control, Signals, and Systems, 17(4), 297–311.
24. Youla, D. C., & Gnavi, G. (1979). Notes on $$n$$-dimensional system theory. IEEE Transactions on Circuits and Systems, 26, 105–111.

© Springer Science+Business Media, LLC, part of Springer Nature 2018

## Authors and Affiliations

• Jiancheng Guan
• 1
• Weiqing Li
• 1
• Baiyu Ouyang
• 1
1. 1.College of Mathematics and Computer Science, Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry Of Education of China)Hunan Normal UniversityChangshaChina

## Personalised recommendations

### Citearticle 