Advertisement

Multidimensional Systems and Signal Processing

, Volume 30, Issue 1, pp 451–464 | Cite as

Parametric estimation of 2D cubic phase signals using high-order Wigner distribution with genetic algorithm

  • Marko SimeunovićEmail author
  • Igor Djurović
  • Alen Pelinković
Article
  • 44 Downloads

Abstract

A two-dimensional (2D) high-order Wigner distribution (HO-WD) is proposed for parameter estimation of 2D polynomial phase signals (PPSs). The genetic algorithm is employed for maximization of the 2D HO-WD. In comparison to the 2D cubic phase function and classical Francos and Friedlander approach, the 2D HO-WD reduces error propagation effect which leads to lower mean squared error in estimation of signal parameters. The proposed technique is generalized for the 2D higher-order PPS.

Keywords

Polynomial-phase signals Gaussian noise Wigner distribution Francos–Friedlander approach Genetic algorithm 

References

  1. Amar, A., Leshem, A., & van der Veen, A.-J. (2010). A low complexity blind estimator of narrowband polynomial phase signals. IEEE Transactions on Signal Processing, 58(9), 4674–4683.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Barbarossa, S., Di Lorenzo, P., & Vecchiarelli, P. (2014). Parameter estimation of 2D multi-component polynomial phase signals: An application to SAR imaging of moving targets. IEEE Transactions on Signal Processing, 62(17), 4375–4389.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Boashash, B. (2015). Time-frequency signal analysis and processing: A comprehensive reference. Boca Raton: Academic Press.Google Scholar
  4. Cristóbal, G., & Hormigo, J. (1999). Texture segmentation through eigen-analysis of the pseudo-Wigner distribution. Pattern Recognition Letters, 20, 337–345.CrossRefGoogle Scholar
  5. Djurović, I., & Stanković, LJ. (2004). Nonparametric algorithm for the local frequency estimation of multicomponent signals. IEEE Transactions on Image Processing, 13(4), 467–474.Google Scholar
  6. Djurović, I., & Simeunović, M. (2015a). Combined HO-CPF and HO-WD PPS estimator. Signal, Image and Video Processing, 9(6), 1395–1400.CrossRefGoogle Scholar
  7. Djurović, I., & Simeunović, M. (2015b). Parameter estimation of non-uniform sampled polynomial-phase signals using the HOCPF-WD. Signal Processing, 106(1), 253–258.CrossRefGoogle Scholar
  8. Djurović, I., Simeunović, M., Djukanović, S., & Wang, P. (2012a). A hybrid CPF-HAF estimation of polynomial-phase signals: Detailed statistical analysis. IEEE Transactions on Signal Processing, 60(10), 5010–5023.MathSciNetCrossRefzbMATHGoogle Scholar
  9. Djurović, I., Simeunović, M., & Lutovac, B. (2012b). Are genetic algorithms useful for the parameter estimation of FM signals? Digital Signal Processing, 22(6), 1137–1144.MathSciNetCrossRefGoogle Scholar
  10. Djurović, I., Wang, P., & Ioana, C. (2010a). Parameter estimation of 2-D cubic phase signal using cubic phase function with genetic algorithm. Signal Processing, 90(9), 2698–2707.CrossRefzbMATHGoogle Scholar
  11. Djurović, I., Wang, P., Ioana, C., & Simeunović, M. (2010b). Cubic phase function for two-dimensional polynomial-phase signals. In Proceedings of 2010 European signal processing conference (EUSIPCO’2010), August 2010 (pp. 23–27).Google Scholar
  12. Francos, J. M., & Friedlander, B. (1998). Two-dimensional polynomial phase signals: Parameter estimation and bounds. Multidimensional Systems and Signal Processing, 9(2), 173–205.MathSciNetCrossRefzbMATHGoogle Scholar
  13. Francos, J. M., & Friedlander, B. (1999). Optimal parameter selection in the phase differencing algorithm for 2-D phase estimation. IEEE Transactions on Signal Processing, 47(1), 273–279.CrossRefzbMATHGoogle Scholar
  14. Friedlander, B., & Francos, J. M. (1996). An estimation algorithm for 2-D polynomial phase signals. IEEE Transactions on Image Processing, 5(6), 1084–1087.CrossRefGoogle Scholar
  15. Hormigo, J., & Cristóbal, G. (2004). Image segmentation using the Wigner–Ville distribution. Advances in Imaging and Electron Physics, 131, 65–80.CrossRefGoogle Scholar
  16. Ivanović, V. N., & Jovanovski, S. (2009). Signal adaptive system for space/spatial-frequency analysis. EURASIP Journal on Advances in Signal Processing, 2009, 1–15.zbMATHGoogle Scholar
  17. Ivanović, V. N., Radović, N., & Jovanovski, S. (2010). Real-time design of space/spatial-frequency optimal filter. Electronics Letters, 46(25), 1696–1697.CrossRefGoogle Scholar
  18. O’Shea, P. (2002). A new technique for instantaneous frequency rate estimation. IEEE Signal Processing Letters, 9(8), 251–252.CrossRefGoogle Scholar
  19. O’Shea, P. (2004). A fast algorithm for estimating the parameters of a quadratic FM signal. IEEE Transactions on Signal Processing, 52(2), 385–393.MathSciNetCrossRefzbMATHGoogle Scholar
  20. Perry, R., DiPietro, R., & Fante, R. (1999). SAR imaging of moving targets. IEEE Transactions on Aerospace and Electronic Systems, 35(1), 188–200.CrossRefGoogle Scholar
  21. Porat, B. (1994). Digital processing of random signals: Theory and methods. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  22. Porat, B., & Friedlander, B. (1996). Asymptotic statistical analysis of the high-order ambiguity function for parameter estimation of polynomial-phase signals. IEEE Transactions on Information Theory, 42(3), 995–1001.CrossRefzbMATHGoogle Scholar
  23. Raković, P., Simeunović, M., & Djurović, I. (2017). On improvement of joint estimation of DOA and PPS coefficients impinging on ULA. Signal Processing, 134, 209–213.CrossRefGoogle Scholar
  24. Reid, D. C., Zoubir, A. M., & Boashash, B. (1997). Aircraft flight parameter estimation based on passive acoustic techniques using the polynomial Wigner–Ville distribution. The Journal of the Acoustical Society of America, 102(1), 207–223.CrossRefGoogle Scholar
  25. Sekhar, S. C., & Sreenivas, T. V. (2006). Signal-to-noise ratio estimation using higher-order moments. Signal Processing, 86(4), 716–732.CrossRefzbMATHGoogle Scholar
  26. Simeunović, M., & Djurović, I. (2016). Parameter estimation of multicomponent 2D polynomial-phase signals using the 2D PHAF-based approach. IEEE Transactions on Signal Processing, 64(3), 771–782.MathSciNetCrossRefGoogle Scholar
  27. Stanković, LJ. (1997). Local polynomial Wigner distribution. Signal Processing, 59(1), 123–128.Google Scholar
  28. Stanković, LJ., Djurović, I., Stanković, S., Simeunović, M., Djukanović, S., & Daković, M. (2014). Instantaneous frequency in time-frequency analysis: Enhanced concepts and performance of estimation algorithms. Digital Signal Processing, 35, 1–13.Google Scholar
  29. Stanković, LJ., Stanković, S., & Djurović, I. (2008). Space/spatial-frequency analysis based filtering. IEEE Transactions on Signal Processing, 48(8), 2343–2352.Google Scholar
  30. Stanković, S., Stanković, LJ., & Uskoković, Z. (1995). On the local frequency, group shift and cross terms in some multidimensional time-frequency distributions: A method for multidimensional time-frequency analysis. IEEE Transactions on Signal Processing, 43(7), 1719–1725.Google Scholar
  31. Suzuki, H., & Kobayashi, F. (1992). A method of two-dimensional spectral analysis using the Wigner distribution. Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 75(1), 101–110.CrossRefGoogle Scholar
  32. Tang, K. S., Man, K. F., Kwong, S., & He, Q. (1996). Genetic algorithms and their applications. Signal Processing Magazine, IEEE, 13(6), 22–37.CrossRefGoogle Scholar
  33. Zhu, Y. M., Goutte, R., & Peyrin, F. (1990). The use of a two-dimensional Hilbert transform for Wigner analysis of 2-dimensional real signals. Signal Processing, 19(3), 205–220.MathSciNetCrossRefzbMATHGoogle Scholar
  34. Zhu, Y. M., Peyrin, F., & Goutte, R. (1987). Transformation de Wigner–Ville: Description d’un nouvel outil de traitement du signal et des images. Annales des Tlcommunications, 42(3), 105–118.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty for Information Systems and TechnologiesUniversity of Donja GoricaPodgoricaMontenegro
  2. 2.Institute for Cutting Edge Information and Communication TechnologiesPodgoricaMontenegro
  3. 3.Electrical Engineering DepartmentUniversity of MontenegroPodgoricaMontenegro
  4. 4.Department of Air Traffic Safety Electronics PersonnelSerbia and Montenegro Air Traffic ServiceBelgradeSerbia

Personalised recommendations