Advertisement

Multidimensional Systems and Signal Processing

, Volume 30, Issue 1, pp 343–361 | Cite as

Convergent method for designing high-accuracy bi-equiripple variable-delay filters using new delay-error expression

  • Tian-Bo DengEmail author
Article
  • 36 Downloads

Abstract

This paper proposes a fast non-iterative approach to the design of an odd-order bi-equiripple variable-delay (VD) digital filter whose mathematical model is a multi-variable (MV) transfer function. The objective of the bi-equiripple design is to minimize the maximum frequency-response deviation of this MV transfer function while mitigating the large overshoots of the VD response at the same time. Since the group-delay function is nonlinear with respect to the MV transfer-function coefficients, it is first linearized through using an approximate approach. This linearization enables the bi-equiripple VD filter to be designed with linear constraints, and the bi-equiripple design is then formulated as a convex minimization problem. The convex minimization does not require any iterations and thus it is fast and yields a convergent optimal solution. Solving the convex minimization problem produces a bi-equiripple VD filter with minimized worst-case frequency-response error and mitigated VD-deviation overshoots (jumps). An illustrating example is presented to demonstrate the above simultaneous deviation suppressions.

Keywords

Multi-variable (MV) Transfer function Group-delay Variable-delay (VD) filter Odd-order VD filter Linearized group-delay error Bi-equiripple design 

References

  1. Deng, T.-B. (2001). Discretization-free design of variable fractional-delay FIR digital filters. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48(6), 637–644.CrossRefGoogle Scholar
  2. Deng, T.-B. (2004). Closed-form design and efficient implementation of variable digital filters with simultaneously tunable magnitude and fractional-delay. IEEE Transactions on Signal Processing, 52(6), 1668–1681.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Deng, T.-B. (2007). Symmetric structures for odd-order maximally flat and weighted-least-squares variable fractional-delay filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(12), 2718–2732.CrossRefGoogle Scholar
  4. Deng, T.-B. (2011). Minimax design of low-complexity even-order variable fractional-delay filters using second-order cone programming. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(10), 692–696.CrossRefGoogle Scholar
  5. Deng, T.-B. (2012a). Bi-minimax design of odd-order variable fractional-delay digital filters. In Proceedings of IEEE ISCAS 2012 (pp. 786–789) Seoul, Korea.Google Scholar
  6. Deng, T.-B. (2012b). Low-complexity and high-accuracy odd-order variable fractional-delay digital filters. In Proceedings of IEEE ICASSP 2012 (pp. 1589–1592). Kyoto, Japan.Google Scholar
  7. Deng, T.-B., Chivapreecha, S., & Dejhan, K. (2012). Bi-minimax design of even-order variable fractional-delay FIR digital filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(8), 1766–1774.MathSciNetCrossRefGoogle Scholar
  8. Deng, T.-B., & Lian, Y. (2006). Weighted-least-squares design of variable fractional-delay FIR filters using coefficient-symmetry. IEEE Transactions on Signal Processing, 54(8), 3023–3038.CrossRefzbMATHGoogle Scholar
  9. Deng, T.-B., & Qin, W. (2013). Coefficient relation-based minimax design and low-complexity structure of variable fractional-delay digital filters. Signal Processing, 93(4), 923–932.CrossRefGoogle Scholar
  10. Deng, T.-B., & Qin, W. (2014). Improved bi-equiripple variable fractional-delay filters. Signal Processing, 94(1), 300–307.CrossRefGoogle Scholar
  11. Deng, T.-B., & Soontornwong, P. (2016). Delay-error-constrained minimax design of all-pass variable-fractional-delay digital filters. Signal Processing, 120(3), 438–447.CrossRefGoogle Scholar
  12. Farrow, C. W. (1988). A continuously variable digital delay element. In Proceedings of IEEE ISCAS 1988 (Vol. 3, pp. 2641–2645). Espoo, Finland.Google Scholar
  13. Liu, G.-S., & Wei, C.-W. (1992). A new variable fractional sample delay filter with nonlinear interpolation. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 39(2), 123–126.CrossRefGoogle Scholar
  14. Liu, J.-C., & You, S.-J. (2007). Weighted least squares near-equiripple approximation of variable fractional delay FIR filters. IET Signal Processing, 1(2), 66–72.CrossRefGoogle Scholar
  15. Pei, S.-C., Shyu, J.-J., Huang, Y.-D., & Chan, C.-H. (2012). Improved methods for the design of variable fractional-delay IIR digital filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(5), 989–1000.MathSciNetCrossRefGoogle Scholar
  16. Soontornwong, P., & Chivapreecha, S. (2015). Pascal-interpolation-based noninteger delay filter and low-complexity realization. Radioengineering, 24(4), 1002–1012.CrossRefGoogle Scholar
  17. Tseng, C.-C., & Lee, S.-L. (2012). Design of fractional delay filter using Hermite interpolation method. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(7), 1458–1471.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Information Science, Faculty of ScienceToho UniversityFunabashiJapan

Personalised recommendations