Advertisement

Multidimensional Systems and Signal Processing

, Volume 30, Issue 1, pp 93–117 | Cite as

Target recognition and discrimination based on multiple-frequencies LFM signal with subcarrier hopping

  • Mahdi NouriEmail author
  • Mohsen Mivehchy
  • Farzad Parvaresh
  • Mohamad F. Sabahi
Article
  • 75 Downloads

Abstract

An anti-deception jamming technique is proposed for moving target indication in a pulse-Doppler (PD) radar. The deceive targets are produced by digital radio frequency memory, which tries to pull off the range and velocity gates of real targets. Similar to orthogonal frequency division multiplexing, we use different sets of orthogonal sub-carriers in consecutive coherent pulse intervals (CPIs). By changing sub-carriers in different CPIs, we show that the deceive targets appear as interference in receiving signals. The generalized likelihood ratio test is used for detection and discrimination of real targets. The performance of the proposed method is achieved analytically and by simulations. Furthermore, we implement a hardware block using a TMS6416-DSK DSP for a PD radar prototype exploiting the proposed algorithm to deception discrimination. The presented results demonstrate the good accordance with theoretical predictions.

Keywords

Deception jamming OFDM Sub-carrier hopping Likelihood ratio test Probability of detection 

References

  1. Akhtar, J. (2009). Orthogonal block coded ECCM schemes against repeat radar jammers. IEEE Transactions on Aerospace and Electronic Systems, 45, 1218–1226.CrossRefGoogle Scholar
  2. Cheng, S., Wang, W. Q., & Shao, H. (2016). Large time-bandwidth product OFDM chirp waveform diversity using for MIMO radar. Multidimensional Systems and Signal Processing, 27, 145–158.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Deng, H., Himed, B., & Wicks, M. C. (2007). Concurrent extraction of target range and doppler information by using orthogonal coding waveforms. IEEE Transactions on Signal Processing, 55, 3294–3301.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Elsworth, A. T. (2010). Electronic warfare. New York (NY): Nova Science Publishers.Google Scholar
  5. Garmatyuk, D. (2012). Cross-range SAR reconstruction with multicarrier OFDM signals. IEEE Geoscience and Remote Sensing Letters, 9, 808–812.CrossRefGoogle Scholar
  6. Garmatyuk, D., & Brenneman, M. (2011). Adaptive multicarrier OFDM SAR signal processing. IEEE Transactions on Geoscience and Remote Sensing, 49, 3780–3790.CrossRefGoogle Scholar
  7. Guosui, L., Hong, G., Xiaohua, Z., & Weimin, S. (1997). The present and the future of random signal radars. IEEE Aerospace and Electronic Systems Magazine, 12, 35–40.CrossRefGoogle Scholar
  8. Huo, K., Jiang, W. D., Li, X., & Mao, J. J. (2011). A new OFDM phase-coded stepped-frequency radar signal and its characteristic. Journal of Electronics & Information Technology, 46, 677–683.CrossRefGoogle Scholar
  9. Hu, Y. H., Zheng, Y., & Deng, Y. K. (2008). A survey of radar ECM and ECCM. Journal of Electrical Systems and Information Technology, 30, 1756–1759.CrossRefGoogle Scholar
  10. Kauppi, J. P., Martikainen, K., & Ruotsalainen, U. (2010). Hierarchical classification of dynamically varying radar pulse repetition interval modulation patterns. Neural Networks, 23, 1226–1237.CrossRefGoogle Scholar
  11. Levanon, N., & Mozeson, E. (2002). Multicarrier radar signal-pulse train and CW. IEEE Transactions on Aerospace and Electronic Systems, 38, 707–720.CrossRefGoogle Scholar
  12. Liu, Z., Wei, X. Z., & Li, X. (2012). Novel method of unambiguous moving target detection in pulse-doppler radar with random pulse repetition interval. Journal of Radars, 1, 28–35.CrossRefGoogle Scholar
  13. Li, S., Zhang, L., Liu, N., Zhang, J., & Zhao, S. (2017). Adaptive detection with conic rejection to suppress deceptive jamming for frequency diverse MIMO radar. Digital Signal Processing, 69, 32–40.CrossRefGoogle Scholar
  14. Manolakis, D. G., Ingle, V. K., & Kogon, S. M. (2005). Statistical and adaptive signal processing. Boston: Artech House.Google Scholar
  15. Neng-Jing, L., & Yi-Ting, Z. (1995). A survey of radar ECM and ECCM. IEEE Transactions on Aerospace and Electronic Systems, 31, 1110–1120.CrossRefGoogle Scholar
  16. Nouri, M., Mivehchy, M., & Abazari Aghdam, S. (2015). Adaptive time–frequency Kernel local fisher discriminant analysis to distinguish range deception jamming. In IEEE conference on computing, communication and networking technologies (ICCCNT) (pp. 1–5).Google Scholar
  17. Nouri, M., Mivehchy, M., & Sabahi, M. F. (2017). Novel anti-deception jamming method by measuring phase noise of oscillators in LFMCW tracking radar sensor networks. IEEE Access, 5, 11455–11467.CrossRefGoogle Scholar
  18. Nouri, M., Mivehchy, M., & Sabahi, M. F. (2017). Target recognition based on phase noise of received signal. IET Electronics Letters, 53, 808–810.CrossRefGoogle Scholar
  19. Nouri, M., Mivehchy, M., & Sabahi, M. F. (2017). Target recognition based on phase noise of received laser signal in lidar jammer. Chinese Optics Letters, 15, 100302.CrossRefGoogle Scholar
  20. Nouri, M., Mivehchy, M., & Sabahi, M. F. (2017). Jammer target discrimination based on local variance of signal histogram in tracking radar and its implementation. Signal, Image and Video Processing, 11, 1025–1032.CrossRefGoogle Scholar
  21. Popper, C., Strasser, M., & Capkun, S. (2010). Anti-jamming broadcast communication using uncoordinated spread spectrum techniques. IEEE Journal on Selected Areas in Communications, 28, 703–715.CrossRefGoogle Scholar
  22. Quan, H., Zhao, H., & Cui, P. (2014). Anti-jamming frequency hopping system using multiple hopping patterns. Wireless Personal Communications, 81, 1159–1176.CrossRefGoogle Scholar
  23. Roome, S. J. (1990). Digital radio frequency memory. Electronics & Communication Engineering Journal, 2, 147.CrossRefGoogle Scholar
  24. Scheer, J., & Melvin, W. L. (2014). Principles of modern radar. Scitech Publishing, an imprint of the IET.Google Scholar
  25. Sen, S. (2014). PAPR-constrained pareto-optimal waveform design for OFDM-STAP radar. IEEE Transactions on Geoscience and Remote Sensing, 52, 3658–3669.CrossRefGoogle Scholar
  26. Shena, M., Wub, D., & Zhub, D. (2012). An ultra-low sidelobe ADBF algorithm for digital array. Journal of Electromagnetic Waves and Applications, 26, 1756–1759.CrossRefGoogle Scholar
  27. Shina, W. J., Yanga, H., & Youa, Y. H. (2013). Performance of carrier frequency synchronization for OFDM-based mobile cellular systems over time selective fading channels. Journal of Electromagnetic Waves and Applications, 27, 989–998.CrossRefGoogle Scholar
  28. Sokolovic, V., & Popovic, V. (2009). Radar detection zone under active jamming. Vojnotehnicki Glasnik, 57, 58–79.CrossRefGoogle Scholar
  29. Soumekh, M. (2006). SAR-ECCM using phase-perturbed LFM chirp signals and DRFM repeat jammer penalization. IEEE Transactions on Aerospace and Electronic Systems, 42, 191–205.CrossRefGoogle Scholar
  30. Sun, J., Tian, J., Wang, G., & Mao, S. (2010). Doppler ambiguity resolution for multiple PRF radar using iterative adaptive approach. Electronics Letters, 46, 1562.CrossRefGoogle Scholar
  31. Su, J., Tao, H. H., Guo, X. L., Xie, J., & Rao, X. (2015). Coherently integrated cubic phase function for multiple LFM signals analysis. Electronics Letters, 51, 411–413.CrossRefGoogle Scholar
  32. Van Trees, H. L. (2001). Detection, estimation, and modulation theory. New York (NY): Wiley.CrossRefzbMATHGoogle Scholar
  33. Wang, W. Q. (2013). Mitigating range ambiguities in high-PRF SAR with OFDM waveform diversity. IEEE Geoscience and Remote Sensing Letters, 10, 101–105.CrossRefGoogle Scholar
  34. Wang, W. Q. (2015). MIMO SAR OFDM chirp waveform diversity design with random matrix modulation. IEEE Transactions on Geoscience and Remote Sensing, 53, 1615–1625.CrossRefGoogle Scholar
  35. Wang, J., Chen, L. Y., Liang, X. D., Ding, C. B., & Li, K. (2015). Implementation of the OFDM chirp waveform on MIMO SAR systems. IEEE Transactions on Geoscience and Remote Sensing, 53, 5218–5228.CrossRefGoogle Scholar
  36. Wen, Q. W., Qicong, P., & Jingye, C. (2009). Waveform-diversity-based millimeter-wave UAV SAR remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 47, 691–700.CrossRefGoogle Scholar
  37. Yua, A. J., Youa, Y. H., & Songa, H. K. (2015). A hybrid MIMO antenna scheme based on channel condition in OFDM systems. Journal of Electromagnetic Waves and Applications, 29, 2118–2129.CrossRefGoogle Scholar
  38. Zaugg, E. C., & Long, D. G. (2008). Theory and application of motion compensation for LFM-CW SAR. IEEE Transactions on Geoscience and Remote Sensing, 46, 2990–2998.CrossRefGoogle Scholar
  39. Zhang, J. D., Zhu, X. H., & Wang, H. Q. (2009). Adaptive radar phase-coded waveform design. Electronics Letters, 45, 1052.CrossRefGoogle Scholar
  40. Zhang, J., Zhu, D., & Zhang, G. (2013). New antivelocity deception jamming technique using pulses with adaptive initial phases. IEEE Transactions on Aerospace and Electronic Systems, 49, 11290–1300.Google Scholar
  41. Zhao, C., Tian, K., & Xu, N. (2011). New jamming scenario: From marginal jamming to deep jamming. Physical Review Letters, 106, 125503.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mahdi Nouri
    • 1
    Email author
  • Mohsen Mivehchy
    • 2
  • Farzad Parvaresh
    • 2
  • Mohamad F. Sabahi
    • 2
  1. 1.Arak University of TechnologyArakIran
  2. 2.University of IsfahanIsfahanIran

Personalised recommendations