# A matrix-based IRLS algorithm for the least \({l}_{p}\)-norm design of 2-D FIR filters

- 194 Downloads

## Abstract

Fast design of two-dimensional FIR filters in the least \({l}_{p}\)-norm sense is investigated in this brief. The design problem is first formulated in a matrix form and then solved by a matrix-based iterative reweighted least squares algorithm. The proposed algorithm includes two loops: one for updating the weighting function and the other for solving the weighted least squares (WLS) subproblems. These WLS subproblems are solved using an efficient matrix-based WLS algorithm, which is an iterative procedure with its initial iterative matrix being the solution matrix in the last iteration, resulting in a considerable CPU-time saving. Through analysis, the new algorithm is shown to have a lower complexity than existing methods. Three design examples are provided to illustrate the high computational efficiency and design precision of the proposed algorithm.

## Keywords

2-D FIR filter Least \(l_p\)-norm design Matrix-based algorithm Iterative reweighted least squares algorithm## References

- Adams, J. W., Member, S., & Sullivan, J. L. (1998). Peak-constrained least-squares optimization.
*IEEE Transactions on Signal Processing*,*46*(2), 306–321.CrossRefGoogle Scholar - Aggarwal, A., Kumar, M., Rawat, T. K., & Upadhyay, D. K. (2016). Optimal design of 2-d FIR digital differentiator using \({L}_1\)-norm based cuckoo-search algorithm.
*Multidimensional Systems and Signal Processing Online First*,*28*, 1–19.Google Scholar - Algazi, V. R., Suk, M., & Rim, C. S. (1986). Design of almost minimax FIR filters in one and two dimensional by WLS techniques.
*IEEE Transactions on Circuits and Systems*,*33*(6), 590–596.CrossRefGoogle Scholar - Aravena, J. L., & Gu, G. (1996). Weighted least mean square design of 2-D FIR digital filters: The general case.
*IEEE Transactions on Signal Processing*,*44*(10), 2568–2578.CrossRefGoogle Scholar - Barreto, J. A., & Burrus, C. S. (1994). Iterative reweighted least squares and the design of two-dimensional FIR digital filters. In
*Proceedings of 1st IEEE internaltional conference on image processing*(pp 775–779). Austin.Google Scholar - Burrus, C. S., Barreto, J. A., & Selesnick, I. W. (1994). Iterative reweighted least-squares design of FIR filters.
*IEEE Transactions on Signal Process*,*42*(11), 2926–2936.CrossRefGoogle Scholar - Chalmers, B. L., Egger, A. G., & Taylor, G. D. (1983). Convex \({L}^p\) approximation.
*Journal of Approximation Theory*,*37*, 326–334.MathSciNetCrossRefzbMATHGoogle Scholar - Diniz, P. S. R., & Netto, S. L. (1999). On WLS-Chebyshev FIR digital filters.
*Journal of Circuits, Systems and Computers*,*9*(3–4), 155–168.CrossRefGoogle Scholar - Fujisawa, K., Futakata, Y., Kojima, M., Matsuyama, S., Nakamura, S., Nakata, K., & Yamashita, M. (2005). SDPA-M (Semidefinite programming algorithm in MATLAB) users manual—Version 6.2.0. Dept. Math. Comput. Sci., Tokyo Institute of Technol., Tokyo, Japan.Google Scholar
- Hamamoto, K., Yoshida, T., & Aikawa, N.(2015). A design of linear phase band-pass FIR digital differentiators with flat passband and \({L}_p\) norm-based stopband characteristics. In
*10th international conference on information, communications and signal processing*(Vol. 2, pp. 3–6). SingaporeGoogle Scholar - Hong, X. Y., Lai, X. P., & Zhao, R. J. (2013). Matrix-based algorithms for constrained least-squares and minimax designs of 2-d FIR filters.
*IEEE Transactions on Signal Processing*,*64*(14), 3620–3631.MathSciNetCrossRefzbMATHGoogle Scholar - Hong, X. Y., Lai, X. P., & Zhao, R. J. (2016). A fast design algorithm for elliptic-error and phase-error constrained LS 2-D FIR filters.
*Multidimensional Systems and Signal Processing*,*27*(2), 477–491.CrossRefzbMATHGoogle Scholar - Horn, R. A., & Johnson, C. R. (1994).
*Topics in matrix analysis*. Cambridge: Cambridge University Press.zbMATHGoogle Scholar - Hsieh, C. H., Kuo, C. M., Jou, Y. D., & Han, Y. L. (1997). Design of two-dimensional FIR digital filters by a two-dimensional WLS technique.
*IEEE Transactions on Circuits and Systems-II*,*44*(5), 348–358.CrossRefGoogle Scholar - Karlovitz, L. A. (1970). Construction of nearest points in the \({L}^p\), \(p\) even, and \({L}^{\infty }\) norms.
*Journal of Approximation Theory*,*3*(2), 123–127.MathSciNetCrossRefzbMATHGoogle Scholar - Kok, C. W., Siu, W. C., & Law, Y. M. (2008). Peak constrained two-dimensional quadrantally symmetric eigenfilter design without transition band specification.
*Signal Process*,*88*(6), 1565–1578.CrossRefzbMATHGoogle Scholar - Lai, X. P. (2008). Online estimation of minimum sizes of 2-D FIR frequency-selective filters with magnitude constraints.
*IEEE Signal Processing Letters*,*15*(1), 135–138.Google Scholar - Lawson, C. L. (1961). Contributions to the theory of linear least maximum approximations. PhD thesis, University of CaliforniaGoogle Scholar
- Lim, Y. C., Lee, J. H., Chen, C. K., & Yang, R. H. (1992). A weighted least squares algorithm for quasi-equiripple FIR and IIR digital filter design.
*IEEE Transactions on Signal Processing*,*40*(3), 551–558.CrossRefGoogle Scholar - Lu, W. S. (2002). A unified approach for the design of 2-D digital filters via semidefinite programming.
*IEEE Transactions on Circuits and Systems-I*,*49*(6), 814–826.MathSciNetCrossRefzbMATHGoogle Scholar - Lu, W. S., & Hinamoto, T. (2011). Two-dimensional digital filters with sparse coefficients.
*Multidimensional Systems and Signal Processing*,*22*(1), 173–189.MathSciNetCrossRefzbMATHGoogle Scholar - Mousa, W. (2012). Iterative design of one-dimensional efficient seismic \({L}_p\) infinite impulse response \(f-x\) digital filters.
*IET Signal Processing*,*6*(6), 541–545.MathSciNetCrossRefGoogle Scholar - Rice, J. R., & Usow, K. H. (1968). The lawson algorithm and extensions.
*Mathematics of Computation*,*22*(101), 118–127.MathSciNetCrossRefzbMATHGoogle Scholar - Savin, C. E., Ahmad, M. O., & Swamy, M. N. S. (1999). \({L}_p\) norm design of stack filters.
*IEEE Transactions on Image Processing*,*18*(12), 1730–1743.CrossRefGoogle Scholar - Tseng, C. C., & Lee, S. L. (2013). Designs of two-dimensional linear phase FIR filters using fractional derivative constraints.
*Signal Processing*,*93*(5), 1141–1151.CrossRefGoogle Scholar - Vargas, R. A. (2012). Iterative design of \(l_p\) digital filters. PhD thesis, Rice UniversityGoogle Scholar
- Vargas, R. A., & Burrus, C. S. (2009). Iterative design of \({L}_p\) FIR and IIR digital filters. In
*13th digital signal processing workshop and 5th IEEE signal processing education workshop*(pp. 468–473). Marco, Ls1, FLGoogle Scholar - Watson, G. A. (1988). Convex \({L}^p\) approximation.
*Journal of Approximation Theory*,*55*(1), 1–11.MathSciNetCrossRefzbMATHGoogle Scholar - Zhao, R. J., & Lai, X. P. (2011). A fast matrix iterative technique for the WLS design of 2-D quadrantally sysmmetic FIR filters.
*Multidimensional Systems and Signal Processing*,*22*(4), 303–317.MathSciNetCrossRefzbMATHGoogle Scholar - Zhao, R. J., & Lai, X. P. (2013). Efficient 2-D based algorithms for WLS design of 2-D FIR filters with arbitrary weighting functions.
*Multidimensional Systems and Signal Processing*,*24*(3), 417–434.MathSciNetCrossRefzbMATHGoogle Scholar - Zhao, R. J., Lai, X. P., & Lin, Z. P. (2016). Weighted least squares design of 2-D FIR filters using a matrix-based generalized conjugate gradient method.
*Journal of the Franklin Institute*,*353*(8), 1759–1780.MathSciNetCrossRefzbMATHGoogle Scholar - Zhu, W. P., Ahmad, M. O., & Swamy, M. N. S. (1999). A least-square design approach for 2-D FIR filters with arbitrary frequency response.
*IEEE Transactions on Circuits and Systems-II*,*46*(8), 1027–1034.CrossRefGoogle Scholar