Advertisement

Reanalysis-based fast solution algorithm for flexible multi-body system dynamic analysis with floating frame of reference formulation

  • Guanxin Huang
  • Weidong Zhu
  • Zhijun YangEmail author
  • Cheng Feng
  • Xin Chen
Article
  • 37 Downloads

Abstract

In order to improve the computational efficiency of flexible multi-body system dynamic analysis with floating frame of reference formulation (FFRF), a reanalysis-based fast solution algorithm is developed here. The data of FFRF analysis process can be divided into two parts: unchanged mass and stiffness matrices part kept by deformation, and changed mass and stiffness matrices part caused by rigid motion and joint constraints. In the proposed method, the factorization of the unchanged part is reused in the entire solution process via employing the reanalysis concept; and the changed part is treated as structural modification. Meanwhile, the joint constraints are handled with an exact reanalysis method—the Sherman–Morrison–Woodbury (SMW) formula, which is also beneficial for saving the computational cost. Numerical examples demonstrate that the computational efficiency of the proposed method is higher than that of full analysis, especially in large scale problems. Moreover, since the proposed fast FFRF solution algorithm is-based on exact reanalysis methods, there is no theoretical error between the results obtained by the fast solution algorithm and full analysis method.

Keywords

Flexible multi-body system dynamics Floating frame of reference formulation Reanalysis Joint constraints 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Nos. 11702065, 91648108, 51875108, 51675106 and 11772100], Guangdong Natural Science Foundation [Grant Nos. 2015A030312008 and 2016A030308016], Guangdong Science and Technology Plan [Grant Nos. 2015B010104006, 2015B010133005, 2015B010104008 and 2015B090921007], National key Research and Develop Program of China [Grant No. 2017YFF0105902], and China Postdoctoral Science Foundation [Grant No. 2017M622623].

References

  1. 1.
    Huston, R.L.: Multibody dynamics—modeling and analysis methods. Appl. Mech. Rev. 44(3), 149–173 (1991) CrossRefGoogle Scholar
  2. 2.
    Likins, P.W.: Finite element appendage equations for hybrid coordinate dynamic analysis. Int. J. Solids Struct. 8(5), 709–731 (1972) zbMATHCrossRefGoogle Scholar
  3. 3.
    Wu, L., Tiso, P.: Nonlinear model order reduction for flexible multibody dynamics: a modal derivatives approach. Multibody Syst. Dyn. 36(4), 405–425 (2016) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Shabana, A.A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1(3), 339–348 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    García-Vallejo, D., Mikkola, A.M., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50(1–2), 249–264 (2007) zbMATHCrossRefGoogle Scholar
  6. 6.
    Kubler, L., Eberhard, P., Geisler, J.: Flexible multibody systems with large deformations using absolute nodal coordinates for isoparameteric solid brick elements. In: Proceedings of DETC’03 ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, IL, USA (2003) Google Scholar
  7. 7.
    Shabana, A.A., Christensen, A.P.: The Sherman–Morrison–Woodbury absolute nodal co-ordinate formulation: plate problem. Int. J. Numer. Methods Eng. 40(15), 2775–2790 (1997) zbMATHCrossRefGoogle Scholar
  8. 8.
    Wu, J., Luo, Z., Zhang, N., Zhang, Y.: Dynamic computation of flexible multibody system with uncertain material properties. Nonlinear Dyn. 85(2), 1–24 (2016) zbMATHGoogle Scholar
  9. 9.
    Patel, M., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 230(1), 69–84 (2016) Google Scholar
  10. 10.
    Sugiyama, H., Yamashita, H.: Spatial joint constraints for the absolute nodal coordinate formulation using the non-generalized intermediate coordinates. Multibody Syst. Dyn. 26(1), 15–36 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Hussein, B.A., Weed, D., Shabana, A.A.: Clamped end conditions and cross section deformation in the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 21(4), 375–393 (2009) zbMATHCrossRefGoogle Scholar
  12. 12.
    Lee, S.-H., Park, T.-W., Seo, J.-H., Yoon, J.-W., Jun, K.-J.: The development of a sliding joint for very flexible multibody dynamics using absolute nodal coordinate formulation. Multibody Syst. Dyn. 20(3), 223–237 (2008) zbMATHCrossRefGoogle Scholar
  13. 13.
    Garcia-Vallejo, D., Escalona, J., Mayo, J., Dominguez, J.: Describing rigid-flexible multibody systems using absolute coordinates. Nonlinear Dyn. 34(1), 75–94 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Shabana, A., Hussien, H., Escanola, J.: Application of the absolute nodal coordinate formulation to large rotation and large deformation problems. Trans. Am. Soc. Mech. Eng. J. Mech. Des. 120, 188–195 (1998) Google Scholar
  15. 15.
    Suarez, L.E., Singh, M.P.: Dynamic condensation method for structural eigenvalue analysis. AIAA J. 30(4), 1046–1054 (1992) CrossRefGoogle Scholar
  16. 16.
    Pesheck, E., Pierre, C., Shaw, S.W.: Modal reduction of a nonlinear rotating beam through nonlinear normal modes. J. Vib. Acoust. 124(2), 229–236 (2002) CrossRefGoogle Scholar
  17. 17.
    Khulief, Y., Mohiuddin, M.: On the dynamic analysis of rotors using modal reduction. Finite Elem. Anal. Des. 26(1), 41–55 (1997) zbMATHCrossRefGoogle Scholar
  18. 18.
    Benner, P., Breiten, T.: Krylov-subspace based model reduction of nonlinear circuit models using bilinear and quadratic-linear approximations. Prog. Ind. Math. ECMI 2010, 153–159 (2012) zbMATHGoogle Scholar
  19. 19.
    Bai, Z.: Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl. Numer. Math. 43(1–2), 9–44 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Freund, R.W.: Krylov-subspace methods for reduced-order modeling in circuit simulation. J. Comput. Appl. Math. 123(1), 395–421 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Wu, L., Tiso, P., Tatsis, K., Chatzi, E., van Keulen, F.: A modal derivatives enhanced Rubin substructuring method for geometrically nonlinear multibody systems. Multibody Syst. Dyn. 45(1), 57–85 (2019) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Lehner, M., Eberhard, P.: A two-step approach for model reduction in flexible multibody dynamics. Multibody Syst. Dyn. 17(2), 157–176 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Fischer, M., Eberhard, P.: Linear model reduction of large scale industrial models in elastic multibody dynamics. Multibody Syst. Dyn. 31(1), 27–46 (2014) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Fehr, J., Eberhard, P.: Simulation process of flexible multibody systems with non-modal model order reduction techniques. Multibody Syst. Dyn. 25(3), 313–334 (2011) zbMATHCrossRefGoogle Scholar
  25. 25.
    Sulitka, M., Šindler, J., Sušeň, J., Smolík, J.: Application of Krylov reduction technique for a machine tool multibody modelling. Adv. Mech. Eng. 2014(1), 65–70 (2014) Google Scholar
  26. 26.
    Huang, G., Wang, H., Li, G.: A novel multi-grid assisted reanalysis for re-meshed finite element models. Comput. Methods Appl. Mech. Eng. 313(1), 817–833 (2017) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wu, B., Li, Z.: Static reanalysis of structures with added degrees of freedom. Commun. Numer. Methods Eng. 22(4), 269–281 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Kirsch, U.: Efficient reanalysis for topological optimization. Struct. Optim. 6(3), 143–150 (1993) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Jian-jun, H., Xiang-Zi, C., Bin, X.: Structural modal reanalysis for large, simultaneous and multiple type modifications. Mech. Syst. Signal Process. 62, 207–217 (2015) CrossRefGoogle Scholar
  30. 30.
    He, J.J., Jiang, J.S., Xu, B.: Modal reanalysis methods for structural large topological modifications with added degrees of freedom and non-classical damping. Finite Elem. Anal. Des. 44(1–2), 75–85 (2007) CrossRefGoogle Scholar
  31. 31.
    Chen, S.H., Rong, F.: A new method of structural modal reanalysis for topological modifications. Finite Elem. Anal. Des. 38(11), 1015–1028 (2002) zbMATHCrossRefGoogle Scholar
  32. 32.
    Huang, C., Chen, S.H., Liu, Z.: Structural modal reanalysis for topological modifications of finite element systems. Eng. Struct. 22(4), 304–310 (2000) CrossRefGoogle Scholar
  33. 33.
    Yang, Z.J., Chen, S.H., Wu, X.M.: A method for modal reanalysis of topological modifications of structures. Int. J. Numer. Methods Eng. 65(13), 2203–2220 (2006) zbMATHCrossRefGoogle Scholar
  34. 34.
    Gao, G., Wang, H., Li, G.: An adaptive time-based global method for dynamic reanalysis. Struct. Multidiscip. Optim. 48(2), 355–365 (2013) MathSciNetCrossRefGoogle Scholar
  35. 35.
    Chen, S.H., Ma, L., Meng, G.: Dynamic response reanalysis for modified structures under arbitrary excitation using epsilon-algorithm. Comput. Struct. 86(23–24), 2095–2101 (2008) CrossRefGoogle Scholar
  36. 36.
    Materna, D., Kalpakides, V.K.: Nonlinear reanalysis for structural modifications based on residual increment approximations. Comput. Mech. 57(1), 1–18 (2016) MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Kirsch, U., Bogomolni, M.: Nonlinear and dynamic structural analysis using combined approximations. Comput. Struct. 85(10), 566–578 (2007) CrossRefGoogle Scholar
  38. 38.
    Kirsch, U.: A unified reanalysis approach for structural analysis, design, and optimization. Struct. Multidiscip. Optim. 25(2), 67–85 (2003) CrossRefGoogle Scholar
  39. 39.
    Yang, Z., Chen, X., Kelly, R.: An adaptive static reanalysis method for structural modifications using epsilon algorithm. In: CSO ’09 Proceedings of the 2009 International Joint Conference on Computational Sciences and Optimization, vol. 2, pp. 897–899 (2009) CrossRefGoogle Scholar
  40. 40.
    Kołakowski, P., Wikło, M., Holnicki-Szulc, J.: The virtual distortion method—a versatile reanalysis tool for structures and systems. Struct. Multidiscip. Optim. 36(3), 217–234 (2007) CrossRefGoogle Scholar
  41. 41.
    Akgün, M.A., Garcelon, J.H., Haftka, R.T.: Fast exact linear and non-linear structural reanalysis and the Sherman–Morrison–Woodbury formulas. Int. J. Numer. Methods Eng. 50(7), 1587–1606 (2001) zbMATHCrossRefGoogle Scholar
  42. 42.
    Sherman, J., Morrison, W.J.: Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Stat. 21(1), 124–127 (1950) MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Hager, W.W.: Updating the inverse of a matrix. SIAM Rev. 31(2), 221–239 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Liu, H., Wu, B., Li, Z.: Method of updating the Cholesky factorization for structural reanalysis with added degrees of freedom. J. Eng. Mech. 140(2), 384–392 (2013) CrossRefGoogle Scholar
  45. 45.
    Davis, T.A., Hager, W.W.: Multiple-rank modifications of a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 22(4), 997–1013 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Davis, T.A., Hager, W.W.: Modifying a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 20(3), 606–627 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Huang, G., Wang, H., Li, G.: An exact reanalysis method for structures with local modifications. Struct. Multidiscip. Optim. 54(3), 499–509 (2016) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.The Key Laboratory of Mechanical Equipment Manufacturing & Control TechnologyGuangdong University of TechnologyGuangzhouChina
  2. 2.Department of Mechanical EngineeringUniversity of MarylandBaltimoreUSA

Personalised recommendations