Reanalysis-based fast solution algorithm for flexible multi-body system dynamic analysis with floating frame of reference formulation
- 37 Downloads
Abstract
In order to improve the computational efficiency of flexible multi-body system dynamic analysis with floating frame of reference formulation (FFRF), a reanalysis-based fast solution algorithm is developed here. The data of FFRF analysis process can be divided into two parts: unchanged mass and stiffness matrices part kept by deformation, and changed mass and stiffness matrices part caused by rigid motion and joint constraints. In the proposed method, the factorization of the unchanged part is reused in the entire solution process via employing the reanalysis concept; and the changed part is treated as structural modification. Meanwhile, the joint constraints are handled with an exact reanalysis method—the Sherman–Morrison–Woodbury (SMW) formula, which is also beneficial for saving the computational cost. Numerical examples demonstrate that the computational efficiency of the proposed method is higher than that of full analysis, especially in large scale problems. Moreover, since the proposed fast FFRF solution algorithm is-based on exact reanalysis methods, there is no theoretical error between the results obtained by the fast solution algorithm and full analysis method.
Keywords
Flexible multi-body system dynamics Floating frame of reference formulation Reanalysis Joint constraintsNotes
Acknowledgements
This work was supported by the National Natural Science Foundation of China [Grant Nos. 11702065, 91648108, 51875108, 51675106 and 11772100], Guangdong Natural Science Foundation [Grant Nos. 2015A030312008 and 2016A030308016], Guangdong Science and Technology Plan [Grant Nos. 2015B010104006, 2015B010133005, 2015B010104008 and 2015B090921007], National key Research and Develop Program of China [Grant No. 2017YFF0105902], and China Postdoctoral Science Foundation [Grant No. 2017M622623].
References
- 1.Huston, R.L.: Multibody dynamics—modeling and analysis methods. Appl. Mech. Rev. 44(3), 149–173 (1991) CrossRefGoogle Scholar
- 2.Likins, P.W.: Finite element appendage equations for hybrid coordinate dynamic analysis. Int. J. Solids Struct. 8(5), 709–731 (1972) zbMATHCrossRefGoogle Scholar
- 3.Wu, L., Tiso, P.: Nonlinear model order reduction for flexible multibody dynamics: a modal derivatives approach. Multibody Syst. Dyn. 36(4), 405–425 (2016) MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Shabana, A.A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1(3), 339–348 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
- 5.García-Vallejo, D., Mikkola, A.M., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50(1–2), 249–264 (2007) zbMATHCrossRefGoogle Scholar
- 6.Kubler, L., Eberhard, P., Geisler, J.: Flexible multibody systems with large deformations using absolute nodal coordinates for isoparameteric solid brick elements. In: Proceedings of DETC’03 ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, IL, USA (2003) Google Scholar
- 7.Shabana, A.A., Christensen, A.P.: The Sherman–Morrison–Woodbury absolute nodal co-ordinate formulation: plate problem. Int. J. Numer. Methods Eng. 40(15), 2775–2790 (1997) zbMATHCrossRefGoogle Scholar
- 8.Wu, J., Luo, Z., Zhang, N., Zhang, Y.: Dynamic computation of flexible multibody system with uncertain material properties. Nonlinear Dyn. 85(2), 1–24 (2016) zbMATHGoogle Scholar
- 9.Patel, M., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 230(1), 69–84 (2016) Google Scholar
- 10.Sugiyama, H., Yamashita, H.: Spatial joint constraints for the absolute nodal coordinate formulation using the non-generalized intermediate coordinates. Multibody Syst. Dyn. 26(1), 15–36 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Hussein, B.A., Weed, D., Shabana, A.A.: Clamped end conditions and cross section deformation in the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 21(4), 375–393 (2009) zbMATHCrossRefGoogle Scholar
- 12.Lee, S.-H., Park, T.-W., Seo, J.-H., Yoon, J.-W., Jun, K.-J.: The development of a sliding joint for very flexible multibody dynamics using absolute nodal coordinate formulation. Multibody Syst. Dyn. 20(3), 223–237 (2008) zbMATHCrossRefGoogle Scholar
- 13.Garcia-Vallejo, D., Escalona, J., Mayo, J., Dominguez, J.: Describing rigid-flexible multibody systems using absolute coordinates. Nonlinear Dyn. 34(1), 75–94 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Shabana, A., Hussien, H., Escanola, J.: Application of the absolute nodal coordinate formulation to large rotation and large deformation problems. Trans. Am. Soc. Mech. Eng. J. Mech. Des. 120, 188–195 (1998) Google Scholar
- 15.Suarez, L.E., Singh, M.P.: Dynamic condensation method for structural eigenvalue analysis. AIAA J. 30(4), 1046–1054 (1992) CrossRefGoogle Scholar
- 16.Pesheck, E., Pierre, C., Shaw, S.W.: Modal reduction of a nonlinear rotating beam through nonlinear normal modes. J. Vib. Acoust. 124(2), 229–236 (2002) CrossRefGoogle Scholar
- 17.Khulief, Y., Mohiuddin, M.: On the dynamic analysis of rotors using modal reduction. Finite Elem. Anal. Des. 26(1), 41–55 (1997) zbMATHCrossRefGoogle Scholar
- 18.Benner, P., Breiten, T.: Krylov-subspace based model reduction of nonlinear circuit models using bilinear and quadratic-linear approximations. Prog. Ind. Math. ECMI 2010, 153–159 (2012) zbMATHGoogle Scholar
- 19.Bai, Z.: Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl. Numer. Math. 43(1–2), 9–44 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
- 20.Freund, R.W.: Krylov-subspace methods for reduced-order modeling in circuit simulation. J. Comput. Appl. Math. 123(1), 395–421 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
- 21.Wu, L., Tiso, P., Tatsis, K., Chatzi, E., van Keulen, F.: A modal derivatives enhanced Rubin substructuring method for geometrically nonlinear multibody systems. Multibody Syst. Dyn. 45(1), 57–85 (2019) MathSciNetzbMATHCrossRefGoogle Scholar
- 22.Lehner, M., Eberhard, P.: A two-step approach for model reduction in flexible multibody dynamics. Multibody Syst. Dyn. 17(2), 157–176 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
- 23.Fischer, M., Eberhard, P.: Linear model reduction of large scale industrial models in elastic multibody dynamics. Multibody Syst. Dyn. 31(1), 27–46 (2014) MathSciNetCrossRefGoogle Scholar
- 24.Fehr, J., Eberhard, P.: Simulation process of flexible multibody systems with non-modal model order reduction techniques. Multibody Syst. Dyn. 25(3), 313–334 (2011) zbMATHCrossRefGoogle Scholar
- 25.Sulitka, M., Šindler, J., Sušeň, J., Smolík, J.: Application of Krylov reduction technique for a machine tool multibody modelling. Adv. Mech. Eng. 2014(1), 65–70 (2014) Google Scholar
- 26.Huang, G., Wang, H., Li, G.: A novel multi-grid assisted reanalysis for re-meshed finite element models. Comput. Methods Appl. Mech. Eng. 313(1), 817–833 (2017) MathSciNetCrossRefGoogle Scholar
- 27.Wu, B., Li, Z.: Static reanalysis of structures with added degrees of freedom. Commun. Numer. Methods Eng. 22(4), 269–281 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
- 28.Kirsch, U.: Efficient reanalysis for topological optimization. Struct. Optim. 6(3), 143–150 (1993) MathSciNetCrossRefGoogle Scholar
- 29.Jian-jun, H., Xiang-Zi, C., Bin, X.: Structural modal reanalysis for large, simultaneous and multiple type modifications. Mech. Syst. Signal Process. 62, 207–217 (2015) CrossRefGoogle Scholar
- 30.He, J.J., Jiang, J.S., Xu, B.: Modal reanalysis methods for structural large topological modifications with added degrees of freedom and non-classical damping. Finite Elem. Anal. Des. 44(1–2), 75–85 (2007) CrossRefGoogle Scholar
- 31.Chen, S.H., Rong, F.: A new method of structural modal reanalysis for topological modifications. Finite Elem. Anal. Des. 38(11), 1015–1028 (2002) zbMATHCrossRefGoogle Scholar
- 32.Huang, C., Chen, S.H., Liu, Z.: Structural modal reanalysis for topological modifications of finite element systems. Eng. Struct. 22(4), 304–310 (2000) CrossRefGoogle Scholar
- 33.Yang, Z.J., Chen, S.H., Wu, X.M.: A method for modal reanalysis of topological modifications of structures. Int. J. Numer. Methods Eng. 65(13), 2203–2220 (2006) zbMATHCrossRefGoogle Scholar
- 34.Gao, G., Wang, H., Li, G.: An adaptive time-based global method for dynamic reanalysis. Struct. Multidiscip. Optim. 48(2), 355–365 (2013) MathSciNetCrossRefGoogle Scholar
- 35.Chen, S.H., Ma, L., Meng, G.: Dynamic response reanalysis for modified structures under arbitrary excitation using epsilon-algorithm. Comput. Struct. 86(23–24), 2095–2101 (2008) CrossRefGoogle Scholar
- 36.Materna, D., Kalpakides, V.K.: Nonlinear reanalysis for structural modifications based on residual increment approximations. Comput. Mech. 57(1), 1–18 (2016) MathSciNetzbMATHCrossRefGoogle Scholar
- 37.Kirsch, U., Bogomolni, M.: Nonlinear and dynamic structural analysis using combined approximations. Comput. Struct. 85(10), 566–578 (2007) CrossRefGoogle Scholar
- 38.Kirsch, U.: A unified reanalysis approach for structural analysis, design, and optimization. Struct. Multidiscip. Optim. 25(2), 67–85 (2003) CrossRefGoogle Scholar
- 39.Yang, Z., Chen, X., Kelly, R.: An adaptive static reanalysis method for structural modifications using epsilon algorithm. In: CSO ’09 Proceedings of the 2009 International Joint Conference on Computational Sciences and Optimization, vol. 2, pp. 897–899 (2009) CrossRefGoogle Scholar
- 40.Kołakowski, P., Wikło, M., Holnicki-Szulc, J.: The virtual distortion method—a versatile reanalysis tool for structures and systems. Struct. Multidiscip. Optim. 36(3), 217–234 (2007) CrossRefGoogle Scholar
- 41.Akgün, M.A., Garcelon, J.H., Haftka, R.T.: Fast exact linear and non-linear structural reanalysis and the Sherman–Morrison–Woodbury formulas. Int. J. Numer. Methods Eng. 50(7), 1587–1606 (2001) zbMATHCrossRefGoogle Scholar
- 42.Sherman, J., Morrison, W.J.: Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Stat. 21(1), 124–127 (1950) MathSciNetzbMATHCrossRefGoogle Scholar
- 43.Hager, W.W.: Updating the inverse of a matrix. SIAM Rev. 31(2), 221–239 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
- 44.Liu, H., Wu, B., Li, Z.: Method of updating the Cholesky factorization for structural reanalysis with added degrees of freedom. J. Eng. Mech. 140(2), 384–392 (2013) CrossRefGoogle Scholar
- 45.Davis, T.A., Hager, W.W.: Multiple-rank modifications of a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 22(4), 997–1013 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
- 46.Davis, T.A., Hager, W.W.: Modifying a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 20(3), 606–627 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
- 47.Huang, G., Wang, H., Li, G.: An exact reanalysis method for structures with local modifications. Struct. Multidiscip. Optim. 54(3), 499–509 (2016) MathSciNetCrossRefGoogle Scholar