Advertisement

Hybrid disturbance rejection control of dynamic bipedal robots

  • Jaime Arcos-LegardaEmail author
  • John Cortes-Romero
  • Andres Beltran-Pulido
  • Andres Tovar
Article
  • 44 Downloads

Abstract

This paper presents a disturbance rejection control strategy for hybrid dynamic systems exposed to model uncertainties and external disturbances. The focus of this work is the gait control of dynamic bipedal robots. The proposed control strategy integrates continuous and discrete control actions. The continuous control action uses a novel model-based active disturbance rejection control (ADRC) approach to track gait trajectory references. The discrete control action resets the gait trajectory references after the impact produced by the robot’s support-leg exchange to maintain a zero tracking error. A Poincaré return map is used to search asymptotic stable periodic orbits in an extended hybrid zero dynamics (EHZD). The EHZD reflects a lower-dimensional representation of the full hybrid dynamics with uncertainties and disturbances. A physical bipedal robot testbed, referred to as Saurian, is fabricated for validation purposes. Numerical simulation and physical experiments show the robustness of the proposed control strategy against external disturbances and model uncertainties that affect both the swing motion phase and the support-leg exchange.

Keywords

Dynamical bipedal robots Active disturbance rejection control (ADRC) Hybrid Zero Dynamics (HZD) Nonlinear disturbance observer 

Notes

Acknowledgements

This work was supported by the Research Office at the National University of Colombia, Bogota campus through the projects 28340 and 37662, and the National Science Foundation through the NRT-IGE grant 1633426. The first author was supported by the Fulbright Commission in Colombia and Colombian Administrative Department of Science, Technology and Innovation—Colciencias.

References

  1. 1.
    Arcos-Legarda, J., Cortes-Romero, J., Tovar, A.: Active disturbance rejection control based on generalized proportional integral observer to control a bipedal robot with five degrees of freedom. In: American Control Conference (ACC), 2016. IEEE Press, New York (2016) Google Scholar
  2. 2.
    Baquero-Suárez, M., Cortés-Romero, J., Arcos-Legarda, J., Coral-Enriquez, H.: A robust two-stage active disturbance rejection control for the stabilization of a riderless bicycle. Multibody Syst. Dyn. 45(1), 7–35 (2019) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brown, T.L., Schmiedeler, J.P.: Gait transitions and disturbance response for planar bipeds with reaction wheel actuation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 3393–3398. IEEE Press, New York (2016) CrossRefGoogle Scholar
  4. 4.
    Brown, T.L., Schmiedeler, J.P.: Reaction wheel actuation for improving planar biped walking efficiency. IEEE Trans. Robot. Autom. 32(5), 1290–1297 (2016) CrossRefGoogle Scholar
  5. 5.
    Castañeda, L.A., Luviano-Juárez, A., Chairez, I.: Robust trajectory tracking of a delta robot through adaptive active disturbance rejection control. IEEE Trans. Control Syst. Technol. 23(4), 1387–1398 (2015) CrossRefGoogle Scholar
  6. 6.
    Chevallereau, C., Abba, G., Aoustin, Y., Plestan, F., Westervelt, E., de Wit, C.C., Grizzle, J.: Rabbit: a testbed for advanced control theory. IEEE Control Syst. Mag. 23(5), 57–79 (2003) CrossRefGoogle Scholar
  7. 7.
    Dai, H., Tedrake, R.: Optimizing robust limit cycles for legged locomotion on unknown terrain. In: 2012 IEEE 51st Annual Conference on Decision and Control (CDC), pp. 1207–1213. IEEE Press, New York (2012) CrossRefGoogle Scholar
  8. 8.
    Dai, H., Tedrake, R.: L 2-gain optimization for robust bipedal walking on unknown terrain. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 3116–3123. IEEE Press, New York (2013) CrossRefGoogle Scholar
  9. 9.
    Gao, Z.: Active disturbance rejection control: a paradigm shift in feedback control system design. In: American Control Conference, 2016, pp. 7–pp. IEEE Press, New York (2006) Google Scholar
  10. 10.
    Gao, Z.: On the centrality of disturbance rejection in automatic control. ISA Trans. 53(4), 850–857 (2014) CrossRefGoogle Scholar
  11. 11.
    Ghiasi, A., Alizadeh, G., Mirzaei, M.: Simultaneous design of optimal gait pattern and controller for a bipedal robot. Multibody Syst. Dyn. 23(4), 401–429 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Griffin, B., Grizzle, J.: Walking gait optimization for accommodation of unknown terrain height variations. In: American Control Conference (ACC), 2015, pp. 4810–4817. IEEE Press, New York (2015) CrossRefGoogle Scholar
  13. 13.
    Griffin, B., Grizzle, J.: Nonholonomic virtual constraints and gait optimization for robust walking control. Int. J. Robot. Res. 36(8), 895–922 (2017) CrossRefGoogle Scholar
  14. 14.
    Grizzle, J., Westervelt, E., Canudas-de Wit, C.: Event-based pi control of an underactuated biped walker. In: 42nd IEEE Conference on Decision and Control. Proceedings, 2003, vol. 3, pp. 3091–3096. IEEE Press, New York (2003) Google Scholar
  15. 15.
    Grizzle, J., Choi, J.H., Hammouri, H., Morris, B.: On observer-based feedback stabilization of periodic orbits in bipedal locomotion. In: Proceedings Methods and Models in Automation and Robotics (2007) Google Scholar
  16. 16.
    Guo, B.Z., Zhao, Z.L.: On convergence of the nonlinear active disturbance rejection control for mimo systems. SIAM J. Control Optim. 51(2), 1727–1757 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Guo, B.Z., Zhao, Z.L.: Active Disturbance Rejection Control for Nonlinear Systems: An Introduction. Wiley, New York (2016) CrossRefzbMATHGoogle Scholar
  18. 18.
    Hamed, K.A., Grizzle, J.W.: Robust event-based stabilization of periodic orbits for hybrid systems: application to an underactuated 3d bipedal robot. In: American Control Conference (ACC), 2013, pp. 6206–6212. IEEE Press, New York (2013) Google Scholar
  19. 19.
    Hamed, K.A., Grizzle, J.W.: Robust event-based stabilization of periodic orbits for hybrid systems: application to an underactuated 3d bipedal robot. In: American Control Conference (ACC), 2013, pp. 6206–6212. IEEE Press, New York (2013) Google Scholar
  20. 20.
    Hamed, K.A., Grizzle, J.W.: Reduced-order framework for exponential stabilization of periodic orbits on parameterized hybrid zero dynamics manifolds: application to bipedal locomotion. Nonlinear Anal. Hybrid Syst. 25, 227–245 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hamed, K.A., Buss, B.G., Grizzle, J.W.: Exponentially stabilizing continuous-time controllers for periodic orbits of hybrid systems: application to bipedal locomotion with ground height variations. Int. J. Robot. Res. 35(8), 977–999 (2016) CrossRefGoogle Scholar
  22. 22.
    Hodgins, J.K., Raibert, M.: Adjusting step length for rough terrain locomotion. IEEE Trans. Robot. Autom. 7(3), 289–298 (1991) CrossRefGoogle Scholar
  23. 23.
    Huang, Y., Xue, W.: Active disturbance rejection control: methodology and theoretical analysis. ISA Trans. 53(4), 963–976 (2014) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Hurmuzlu, Y., Marghitu, D.B.: Rigid body collisions of planar kinematic chains with multiple contact points. Int. J. Robot. Res. 13(1), 82–92 (1994) CrossRefGoogle Scholar
  25. 25.
    Hurst, J.W., Rizzi, A.A.: Series compliance for an efficient running gait. IEEE Robot. Autom. Mag. 15(3), 42–51 (2008) CrossRefGoogle Scholar
  26. 26.
    Isidori, A.: Nonlinear Control Systems, Third edn. Springer, Berlin (1995) CrossRefzbMATHGoogle Scholar
  27. 27.
    Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd, M., Abeles, P., Stephen, D., Mertins, N., Lesman, A., Carff, J., Rifenburgh, W., Kaveti, P., Straatman, W., Smith, J., Griffioen, M., Layton, B., de Boer, T., Koolen, T., Neuhaus, P., Pratt, J.: Team ihmc’s lessons learned from the darpa robotics challenge trials. J. Field Robot. 32(2), 192–208 (2015).  https://doi.org/10.1002/rob.21571. http://dx.doi.org/10.1002/rob.21571 CrossRefGoogle Scholar
  28. 28.
    Kolathaya, S., Ames, A.D.: Parameter sensitivity and boundedness of robotic hybrid periodic orbits** this work is supported by the national science foundation through grants cns-0953823 and cns-1136104. IFAC-PapersOnLine 48(27), 377–382 (2015) CrossRefGoogle Scholar
  29. 29.
    Kolathaya, S., Ames, A.D.: Parameter to state stability of control Lyapunov functions for hybrid system models of robots. Nonlinear Anal. Hybrid Syst. 25, 174–191 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Koolen, T., De Boer, T., Rebula, J., Goswami, A., Pratt, J.: Capturability-based analysis and control of legged locomotion, part 1: theory and application to three simple gait models. Int. J. Robot. Res. 31(9), 1094–1113 (2012) CrossRefGoogle Scholar
  31. 31.
    Long, Y., Du, Z., Cong, L., Wang, W., Zhang, Z., Dong, W.: Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton. ISA Trans. 67, 389–397 (2017) CrossRefGoogle Scholar
  32. 32.
    McGeer, T.: Passive walking with knees. In: 1990 IEEE International Conference on Robotics and Automation, 1990. Proceedings, pp. 1640–1645. IEEE Press, New York (1990) CrossRefGoogle Scholar
  33. 33.
    Montano, O., Orlov, Y., Aoustin, Y., Chevallereau, C.: Orbital stabilization of an underactuated bipedal gait via nonlinear \(\mathcal{H} _{\infty }\)-control using measurement feedback. Auton. Robots 41(6), 1277–1295 (2017).  https://doi.org/10.1007/s10514-015-9543-z CrossRefGoogle Scholar
  34. 34.
    Nguyen, Q., Sreenath, K.: L 1 adaptive control for bipedal robots with control Lyapunov function based quadratic programs. In: American Control Conference (ACC), 2015, pp. 862–867. IEEE Press, New York (2015) CrossRefGoogle Scholar
  35. 35.
    Oza, H.B., Orlov, Y.V., Spurgeon, S.K., Aoustin, Y., Chevallereau, C.: Finite time tracking of a fully actuated biped robot with pre-specified settling time: a second order sliding mode synthesis. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2570–2575. IEEE Press, New York (2014) CrossRefGoogle Scholar
  36. 36.
    Pratt, J., Koolen, T., De Boer, T., Rebula, J., Cotton, S., Carff, J., Johnson, M., Neuhaus, P.: Capturability-based analysis and control of legged locomotion, part 2: application to m2v2, a lower body humanoid. Int. J. Robot. Res. 31(9), 1117–1133 (2012) CrossRefGoogle Scholar
  37. 37.
    Sira-Ramírez, H., Gao, Z., Canuto, E.: An active disturbance rejection control approach for decentralized tracking in interconnected systems. In: 2014 European Control Conference (ECC), pp. 588–593. IEEE Press, New York (2014) CrossRefGoogle Scholar
  38. 38.
    Slotine, J.J.E., Li, W., et al.: Applied Nonlinear Control, 1. Prentice Hall, Englewood Cliffs (1991) zbMATHGoogle Scholar
  39. 39.
    Sreenath, K., Park, H.W., Poulakakis, I., Grizzle, J.W.: A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on mabel. Int. J. Robot. Res. 30(9), 1170–1193 (2011) CrossRefGoogle Scholar
  40. 40.
    Veer, S., Motahar, M.S., Poulakakis, I.: On the adaptation of dynamic walking to persistent external forcing using hybrid zero dynamics control. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 997–1003. IEEE Press, New York (2015) CrossRefGoogle Scholar
  41. 41.
    Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion, vol. 28. CRC Press, Boca Raton (2007) CrossRefGoogle Scholar
  42. 42.
    Zheng, Q., Gao, L.Q., Gao, Z.: On validation of extended state observer through analysis and experimentation. J. Dyn. Syst. Meas. Control 134(2), 024505 (2012) CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Mechatronical EngineeringUniversidad Nacional de ColombiaBogotáColombia
  2. 2.Department of Electrical and Electronic EngineeringUniversidad Nacional de ColombiaBogotáColombia
  3. 3.Department of Mechanical and Energy EngineeringIndiana University-Purdue University IndianapolisIndianapolisUSA

Personalised recommendations