Tensegrity system dynamics with rigid bars and massive strings

  • Raman GoyalEmail author
  • Robert E. Skelton


This paper provides a single matrix-second-order nonlinear differential equation to simulate the dynamics of tensegrity systems with rigid bars and massive strings. The paper allows one to distribute the string mass into any specified number of point masses along the string while preserving the exact rigid bar dynamics. This formulation also allows modeling of skins and surfaces as a finite set of strings in the tensegrity dynamics. To reduce the complexity of the model, non-minimal coordinates (6 degrees of freedom for each bar instead of 5) were chosen. This is the key to give more accurate results in computer simulations since the mathematical structure of the model is simplified and exploited during numerical computations. A bar length correction algorithm is also provided for both class-1 and class-\(k\) tensegrity systems to correct the erroneous change in bar length because of computational errors during numerical integration. We characterize the control variable as the force density in each string. This allows control laws to be developed independently of the material chosen for the structural elements. A nonlinear transformation back to the physical control variables involves the material properties.


Tensegrity systems Multibody dynamics Flexible structures Prestressable structures 



The authors thank Mr. James V. Henrickson for assisting in writing the software for the dynamic simulations.


  1. 1.
    VanderVoort, R.J., Singh, R.P., Likins, P.W.: Dynamics of flexible bodies in tree topology—a computer oriented approach. J. Guid. Control Dyn. 8, 584–590 (1985) CrossRefzbMATHGoogle Scholar
  2. 2.
    Skelton, R.E., de Oliveira, M.: Tensegrity Systems. Springer, Berlin (2009) zbMATHGoogle Scholar
  3. 3.
    Fuller, R.B., Applewhite, E.J., Loeb, A.L.: Synergetics: Explorations in the Geometry of Thinking. Macmillan, New York (1975) Google Scholar
  4. 4.
    Lalvani, H.: Origins of tensegrity: views of Emmerich, Fuller and Snelson. Int. J. Space Struct. 11(1–2), 27 (1996) CrossRefGoogle Scholar
  5. 5.
    Skelton, R.E., de Oliveira, M.C.: Optimal complexity of deployable compressive structures. J. Franklin Inst. 347(1), 228–256 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Boz, U., Goyal, R., Skelton, R.E.: Actuators and sensors based on tensegrity D-bar structures. Front. Astron. Space Sci. 5, 41 (2018) CrossRefGoogle Scholar
  7. 7.
    Karnan, H., Goyal, R., Majji, M., Skelton, R.E., Singla, P.: Visual feedback control of tensegrity robotic systems. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2048–2053 (2017) CrossRefGoogle Scholar
  8. 8.
    SunSpiral, V., Gorospe, G., Bruce, J., Iscen, A., Korbel, G., Milam, S., Agogino, A., Atkinson, D.: Tensegrity based probes for planetary exploration: entry, descent and landing (EDL) and surface mobility analysis. International Journal of Planetary Probes 7 (2013) Google Scholar
  9. 9.
    Rimoli, J.J.: On the impact tolerance of tensegrity-based planetary landers. In: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1511 (2016) Google Scholar
  10. 10.
    Goyal, R., Peraza Hernandez, E.A., Skelton, R.E.: Analytical study of tensegrity lattices for mass-efficient mechanical energy absorption. International Journal of Space Structures (2018) Google Scholar
  11. 11.
    Caluwaerts, K., Despraz, J., Işçen, A., Sabelhaus, A.P., Bruce, J., Schrauwen, B., SunSpiral, V.: Design and control of compliant tensegrity robots through simulation and hardware validation. J. R. Soc. Interface 11(98), 20140520 (2014) CrossRefGoogle Scholar
  12. 12.
    Djouadi, S., Motro, R., Pons, J.C., Crosnier, B.: Active control of tensegrity systems. J. Aerosp. Eng. 11(2), 37–44 (1998) CrossRefGoogle Scholar
  13. 13.
    Paul, C., Valero-Cuevas, F.J., Lipson, H.: Design and control of tensegrity robots for locomotion. IEEE Trans. Robot. 22(5), 944–957 (2006) CrossRefGoogle Scholar
  14. 14.
    Carpentieri, G., Skelton, R.E., Fraternali, F.: Minimum mass and optimal complexity of planar tensegrity bridges. Int. J. Space Struct. 30(3–4), 221–243 (2015) CrossRefGoogle Scholar
  15. 15.
    Carpentieri, G., Skelton, R.E., Fraternali, F.: A minimal mass deployable structure for solar energy harvesting on water canals. Struct. Multidiscip. Optim. 55(2), 449–458 (2017) CrossRefGoogle Scholar
  16. 16.
    Tibert, A.G., Pellegrino, S.: Deployable tensegrity mast. In: 44th AIAA/ASME/ASCE/AHS/ASC, Structures, Structural Dynamics and Materials Conference and Exhibit, Norfolk, VA, USA, p. 1978 (2003) Google Scholar
  17. 17.
    Skelton, R., Longman, A.: Growth capable tensegrity structures as an enabler of space colonization. In: AIAA Space 2014 Conference and Exposition, p. 4370 (2014) Google Scholar
  18. 18.
    Goyal, R., Bryant, T., Majji, M., Skelton, R.E., Longman, A.: Design and control of growth adaptable artificial gravity space habitat. In: AIAA SPACE and Astronautics Forum and Exposition, p. 5141 (2017) Google Scholar
  19. 19.
    Ingber, D.E.: The architecture of life. Sci. Am. 278(1), 48–57 (1998) CrossRefGoogle Scholar
  20. 20.
    De Oliveira, M., Vera, C., Valdez, P., Sharma, Y., Skelton, R., Sung, L.A.: Nanomechanics of multiple units in the erythrocyte membrane skeletal network. Ann. Biomed. Eng. 38(9), 2956–2967 (2010) CrossRefGoogle Scholar
  21. 21.
    Vera, C., Skelton, R., Bossens, F., Sung, L.A.: 3-D nanomechanics of an erythrocyte junctional complex in equibiaxial and anisotropic deformations. Ann. Biomed. Eng. 33(10), 1387–1404 (2005) CrossRefGoogle Scholar
  22. 22.
    Murakami, H.: Static and dynamic analyses of tensegrity structures. Part 1. Nonlinear equations of motion. Int. J. Solids Struct. 38(20), 3599–3613 (2001) CrossRefzbMATHGoogle Scholar
  23. 23.
    Murakami, H.: Static and dynamic analyses of tensegrity structures. Part II. Quasi-static analysis. Int. J. Solids Struct. 38(20), 3615–3629 (2001) CrossRefGoogle Scholar
  24. 24.
    Sultan, C., Corless, M., Skelton, R.E.: Linear dynamics of tensegrity structures. Eng. Struct. 24(6), 671–685 (2002) CrossRefzbMATHGoogle Scholar
  25. 25.
    Masic, M., Skelton, R.E.: Selection of prestress for optimal dynamic/control performance of tensegrity structures. Int. J. Solids Struct. 43(7), 2110–2125 (2006) CrossRefzbMATHGoogle Scholar
  26. 26.
    Ali, N.B.H., Smith, I.F.C.: Dynamic behavior and vibration control of a tensegrity structure. Int. J. Solids Struct. 47, 1285–1296 (2010) CrossRefzbMATHGoogle Scholar
  27. 27.
    Tan, G.E.B., Pellegrino, S.: Nonlinear vibration of cable-stiffened pantographic deployable structures. J. Sound Vib. 314(3), 783–802 (2008) CrossRefGoogle Scholar
  28. 28.
    Skelton, R.: Dynamics and control of tensegrity systems. In: IUTAM Symposium on Vibration Control of Nonlinear Mechanisms and Structures, pp. 309–318. Springer, Berlin (2005) CrossRefGoogle Scholar
  29. 29.
    Nagase, K., Skelton, R.E.: Network and vector forms of tensegrity system dynamics. Mech. Res. Commun. 59, 14–25 (2014) CrossRefGoogle Scholar
  30. 30.
    Cheong, J., Skelton, R.E.: Nonminimal dynamics of general class \(k\) tensegrity systems. Int. J. Struct. Stab. Dyn. 15(2), 1450042 (2015). 22 pages MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Gibbs, J.W.: In: Elements of Vector Analysis, p. 67 (1884) Google Scholar
  32. 32.
    Hughes, P.C.: Spacecraft Attitude Dynamics. Wiley & Sons, New York (1986) Google Scholar
  33. 33.
    Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2005) CrossRefzbMATHGoogle Scholar
  34. 34.
    Hibbeler, R.C.: Engineering Mechanics: Statics and Dynamics, 14/e. Prentice Hall, Upper Saddle River (2012) zbMATHGoogle Scholar
  35. 35.
    Nagase, K., Skelton, R.E.: Double-helix tensegrity structures. AIAA J. 53(4), 847–862 (2014) CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations