# Modeling three-dimensional surface-to-surface rigid contact and impact

- 216 Downloads

## Abstract

This work presents a rigid body framework for analyzing three-dimensional surface contacts and impacts as a simultaneous multi-point impact problem with friction. A method is developed to address the indeterminacy issue typically associated with multi-point contact and impact analysis. This is accomplished using the constraints on impulses and contact forces defined by the Coulomb friction law and rigid body constraints. The proposed approach relies on a global interpretation of Stronge’s energetic coefficient of restitution (ECOR) to maintain energetic consistency. A key aspect of this work involves addressing the three-dimensionality of this problem, which requires a numerical integration in the impulse domain to address the slip/no-slip behavior in the tangential plane of the impact. This work also models the transition to contact after a series of impacts, and proposes a method for enforcing frictional contact constraints. Several examples of simulation results using the proposed method are presented here.

## Keywords

Rigid body Impact Contact 3D model Coulomb friction Stronge hypothesis## Notes

## References

- 1.Wang, Y.-T., Kumar, V., Abel, J.: Dynamics of rigid bodies undergoing multiple frictional contacts. In: Proceedings 1992 IEEE International Conference on Robotics and Automation, pp. 2764–2769. IEEE, New York (1992) CrossRefGoogle Scholar
- 2.Kraus, P.R., Kumar, V.: Compliant contact models for rigid body collisions. In: Proceedings 1997 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1382–1387. IEEE, New York (1997) Google Scholar
- 3.Jia, Y.-B.: Energy-based modeling of tangential compliance in 3-dimensional impact. In: Algorithmic Foundations of Robotics IX, pp. 267–284. Springer, Berlin (2011) Google Scholar
- 4.Gonthier, Y., McPhee, J., Lange, C., Piedboeuf, J.-C.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn.
**11**(3), 209–233 (2004) zbMATHCrossRefGoogle Scholar - 5.Sharf, I., Zhang, Y.: A contact force solution for non-colliding contact dynamics simulation. Multibody Syst. Dyn.
**16**(3), 263–290 (2006) MathSciNetzbMATHCrossRefGoogle Scholar - 6.Lankarani, H.: Contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des.
**112**(3), 369–376 (1990) Google Scholar - 7.Gilardi, G., Sharf, I.: Literature survey of contact dynamics modeling. Mech. Mach. Theory
**37**(10), 1213–1239 (2002) MathSciNetzbMATHCrossRefGoogle Scholar - 8.Darboux, G.: Etude géométrique sur les percussions et le choc des corps. Bull. Sci. Math. Astron.
**4**(1), 126–160 (1880) MathSciNetzbMATHGoogle Scholar - 9.Whittaker, E.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 2nd edn. Cambridge University Press, Cambridge (1917) Google Scholar
- 10.Keller, J.: Impact with friction. J. Appl. Mech.
**53**(1), 1–4 (1986) MathSciNetzbMATHCrossRefGoogle Scholar - 11.Djerassi, S.: Three-dimensional, one-point collision with friction. Multibody Syst. Dyn.
**27**(2), 173–195 (2012) MathSciNetzbMATHCrossRefGoogle Scholar - 12.Stronge, W.: Impact Mechanics. Cambridge University Press, Cambridge (2000) zbMATHCrossRefGoogle Scholar
- 13.Han, I., Gilmore, B.: Multi-body impact motion with friction-analysis, simulation, and experimental validation. J. Mech. Des.
**115**(3), 412–422 (1993) Google Scholar - 14.Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts, vol. 9. John Wiley & Sons, New York (1996) zbMATHCrossRefGoogle Scholar
- 15.Pfeiffer, F.: Mechanical System Dynamics, vol. 40. Springer, Berlin (2008) zbMATHCrossRefGoogle Scholar
- 16.Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control, 2nd edn. Springer, London (1999) zbMATHCrossRefGoogle Scholar
- 17.Brogliato, B., Ten Dam, A., et al.: Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. Appl. Mech. Rev.
**55**(2), 107–149 (2002) CrossRefGoogle Scholar - 18.Flickinger, D., Bowling, A.: Simultaneous oblique impacts and contacts in multibody systems with friction. Multibody Syst. Dyn.
**23**(3), 249–261 (2010) MathSciNetzbMATHCrossRefGoogle Scholar - 19.Huněk, I.: On a penalty formulation for contact-impact problems. Comput. Struct.
**48**(2), 193–203 (1993) zbMATHCrossRefGoogle Scholar - 20.Simo, J.C., Laursen, T.: An augmented Lagrangian treatment of contact problems involving friction. Comput. Struct.
**42**(1), 97–116 (1992) MathSciNetzbMATHCrossRefGoogle Scholar - 21.Papadopoulos, P., Solberg, J.: A Lagrange multiplier method for the finite element solution of frictionless contact problems. Math. Comput. Model.
**28**(4), 373–384 (1998) zbMATHCrossRefGoogle Scholar - 22.Brogliato, B.: Kinetic quasi-velocities in unilaterally constrained Lagrangian mechanics with impacts and friction. Multibody Syst. Dyn.
**32**(2), 175–216 (2014) MathSciNetzbMATHCrossRefGoogle Scholar - 23.Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. I. Theoretical framework. Proc. R. Soc. A, Math. Phys. Eng. Sci.,
**464**, 3193–3211. (2008) MathSciNetzbMATHCrossRefGoogle Scholar - 24.Stewart, D.: Rigid-body dynamics with friction and impact. SIAM Rev.
**42**(1), 3–39 (2000) MathSciNetzbMATHCrossRefGoogle Scholar - 25.Chakraborty, N., Berard, S., Akella, S., Trinkle, J.C.: An implicit time-stepping method for multibody systems with intermittent contact. In: Robotics: Science and Systems (2007) zbMATHGoogle Scholar
- 26.Anitescu, M., Potra, F.A., Stewart, D.E.: Time-stepping for three-dimensional rigid body dynamics. Comput. Methods Appl. Mech. Eng.
**177**(3), 183–197 (1999) MathSciNetzbMATHCrossRefGoogle Scholar - 27.Stewart, D.E., Trinkle, J.C.: An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction. Int. J. Numer. Methods Eng.
**39**(15), 2673–2691 (1996) MathSciNetzbMATHCrossRefGoogle Scholar - 28.Liu, T., Wang, M.Y.: Computation of three-dimensional rigid-body dynamics with multiple unilateral contacts using time-stepping and Gauss–Seidel methods. IEEE Trans. Autom. Sci. Eng.
**2**(1), 19–31 (2005) CrossRefGoogle Scholar - 29.Moreau, J.: Numerical aspects of the sweeping process. Comput. Methods Appl. Mech. Eng.
**177**(3), 329–349 (1999) MathSciNetzbMATHCrossRefGoogle Scholar - 30.Zhao, Z., Liu, C., Brogliato, B.: Planar dynamics of a rigid body system with frictional impacts. II. Qualitative analysis and numerical simulations. Proc. R. Soc. A, Math. Phys. Eng. Sci.
**465**(2107), 2267–2292 (2009) MathSciNetzbMATHCrossRefGoogle Scholar - 31.Rodriguez, A., Bowling, A.: Solution to indeterminate multi-point impact with frictional contact using constraints. Multibody Syst. Dyn.
**28**(4), 313–330 (2012) MathSciNetCrossRefGoogle Scholar - 32.Rodriguez, A., Bowling, A.: Study of Newton’s cradle using a new discrete approach. Multibody Syst. Dyn.
**33**(1), 61–92 (2015) MathSciNetCrossRefGoogle Scholar - 33.Chatterjee, A., Rodriguez, A., Bowling, A.: Analytic solution for planar indeterminate impact problems using an energy constraint. Multibody Syst. Dyn.
**42**(3), 347–379 (2018) MathSciNetzbMATHCrossRefGoogle Scholar - 34.Rodriguez, A.: Dynamic simulation of multibody systems in simultaneous, indeterminate contact and impact with friction. PhD dissertation, UTA (2014) Google Scholar
- 35.Rodriguez, A., Chatterjee, A., Bowling, A.: Solution to three-dimensional indeterminate contact and impact with friction using rigid body constraints. In: ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V006T10A037 (2015). American Society of Mechanical Engineers Google Scholar
- 36.Chatterjee, A., Bowling, A.: Resolving the unique invariant slip-direction in rigid three-dimensional multi-point impacts at stick–slip transitions. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V006T09A008 (2018). American Society of Mechanical Engineers Google Scholar
- 37.Djerassi, S.: Collision with friction; Part A: Newton’s hypothesis. Multibody Syst. Dyn.
**21**(1), 37–54 (2009) MathSciNetzbMATHCrossRefGoogle Scholar - 38.Djerassi, S.: Collision with friction; Part B: Poisson’s and Stronge’s hypotheses. Multibody Syst. Dyn.
**21**(1), 55–70 (2009) MathSciNetzbMATHCrossRefGoogle Scholar - 39.Djerassi, S.: Stronge’s hypothesis-based solution to the planar collision-with-friction problem. Multibody Syst. Dyn.
**24**(4), 493–515 (2010) MathSciNetzbMATHCrossRefGoogle Scholar - 40.Kane, T., Levinson, D.: Dynamics: Theory and Applications. McGraw-Hill, New York (1985) Google Scholar
- 41.Marghitu, D., Stoenescu, E.: Rigid body impact with moment of rolling friction. Nonlinear Dyn.
**50**(3), 597–608 (2007) MathSciNetzbMATHCrossRefGoogle Scholar - 42.Bergés, P., Bowling, A.: Rebound, slip, and compliance in the modeling and analysis of discrete impacts in legged locomotion. J. Vib. Control
**17**(12), 1407–1430 (2006) MathSciNetzbMATHCrossRefGoogle Scholar - 43.Najafabadi, S., Kovecses, J., Angeles, J.: Generalization of the energetic coefficient of restitution for contacts in multibody systems. J. Comput. Nonlinear Dyn.
**3**(4), 70–84 (2008) Google Scholar - 44.Yilmaz, C., Gharib, M., Hurmuzlu, Y.: Solving frictionless rocking block problem with multiple impacts. Proc. R. Soc. A, Math. Phys. Eng. Sci.
**465**(2111), 3323–3339 (2009) MathSciNetzbMATHCrossRefGoogle Scholar - 45.Brake, M.: An analytical elastic-perfectly plastic contact model. Int. J. Solids Struct.
**49**(22), 3129–3141 (2012) CrossRefGoogle Scholar - 46.Jackson, R.L., Green, I., Marghitu, D.B.: Predicting the coefficient of restitution of impacting elastic-perfectly plastic spheres. Nonlinear Dyn.
**60**(3), 217–229 (2010) zbMATHCrossRefGoogle Scholar - 47.Zait, Y., Zolotarevsky, V., Kligerman, Y., Etsion, I.: Multiple normal loading-unloading cycles of a spherical contact under stick contact condition. J. Tribol.
**132**(4), 1–7 (2010) zbMATHGoogle Scholar - 48.Zhang, F., Yeddanapudi, M., Mosterman, P.J.: Zero-crossing location and detection algorithms for hybrid system simulation. IFAC Proc. Vol.
**41**(2), 7967–7972 (2008) CrossRefGoogle Scholar - 49.Mosterman, P.J.: An overview of hybrid simulation phenomena and their support by simulation packages. In: International Workshop on Hybrid Systems: Computation and Control, pp. 165–177. Springer, Berlin (1999) CrossRefzbMATHGoogle Scholar
- 50.Utkin, V.: Chattering problem. IFAC Proc. Vol.
**44**(1), 13374–13379 (2011) CrossRefGoogle Scholar - 51.Aljarbouh, A., Caillaud, B.: Chattering-free simulation of hybrid dynamical systems with the functional mock-up interface 2.0. In: The First Japanese Modelica Conferences, vol. 124, pp. 95–105 (2016) Google Scholar
- 52.Pennestrı, V.P., Valentini, P.: Coordinate reduction strategies in multibody dynamics: a review. In: Proceedings of the Conference on Multibody System Dynamics (2007) zbMATHGoogle Scholar
- 53.Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn.
**3**(1), 011005 (2008) CrossRefGoogle Scholar - 54.Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng.
**1**(1), 1–16 (1972) MathSciNetzbMATHCrossRefGoogle Scholar - 55.Ostermeyer, G.-P.: On Baumgarte stabilization for differential algebraic equations. In: Real-Time Integration Methods for Mechanical System Simulation, pp. 193–207. Springer, Berlin (1990) CrossRefGoogle Scholar
- 56.Nikravesh, C., Nikravesh, P.: An adaptive constraint violation stabilization method for dynamic analysis of mechanical systems. J. Mech. Transm. Autom. Des.
**107**, 488–492 (1985) CrossRefGoogle Scholar - 57.Park, K., Chiou, J.: Stabilization of computational procedures for constrained dynamical systems. J. Guid. Control Dyn.
**11**(4), 365–370 (1988) MathSciNetzbMATHCrossRefGoogle Scholar - 58.Bayo, E., De Jalon, J.G., Serna, M.A.: A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems. Comput. Methods Appl. Mech. Eng.
**71**(2), 183–195 (1988) MathSciNetzbMATHCrossRefGoogle Scholar - 59.Wehage, R., Haug, E.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des.
**104**(1), 247–255 (1982) Google Scholar - 60.García de Jalón, J., Unda, J., Avello, A., Jiménez, J.: Dynamic analysis of three-dimensional mechanisms in “natural” coordinates. J. Mech. Transm. Autom. Des.
**109**(4), 460–465 (1987) CrossRefGoogle Scholar - 61.Liang, C.G., Lance, G.M.: A differentiable null space method for constrained dynamic analysis I. J. Mech. Transm. Autom. Des.
**109**(3), 405–411 (1987) CrossRefGoogle Scholar - 62.Kim, S., Vanderploeg, M.: QR decomposition for state space representation of constrained mechanical dynamic systems. J. Mech. Trans.
**108**(2), 183–188 (1986) CrossRefGoogle Scholar - 63.Amirouche, F., Ider, S.: Coordinate reduction in the dynamics of constrained multibody system a new approach. J. Appl. Mech.
**55**, 899 (1988) MathSciNetzbMATHCrossRefGoogle Scholar - 64.Righetti, L., Buchli, J., Mistry, M., Schaal, S.: Inverse dynamics control of floating-base robots with external constraints: a unified view. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1085–1090. IEEE, New York (2011) CrossRefGoogle Scholar
- 65.Mistry, M., Buchli, J., Schaal, S.: Inverse dynamics control of floating base systems using orthogonal decomposition. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 3406–3412. IEEE, New York (2010) CrossRefGoogle Scholar
- 66.Glocker, C., Studer, C.: Formulation and preparation for numerical evaluation of linear complementarity systems in dynamics. Multibody Syst. Dyn.
**13**(4), 447–463 (2005) MathSciNetzbMATHCrossRefGoogle Scholar - 67.Bowling, A.: Dynamic performance, mobility, and agility of multi-legged robots. J. Dyn. Syst. Meas. Control
**128**(4), 765–777 (2006) CrossRefGoogle Scholar - 68.Pfeiffer, F., Glocker, C.: Multi-Body Dynamics with Unilateral Constraints. Wiley, New York (1996) zbMATHCrossRefGoogle Scholar
- 69.Stronge, W.: Smooth dynamics of oblique impact with friction. Int. J. Impact Eng.
**51**, 36–49 (2013) CrossRefGoogle Scholar - 70.Christoph, G.: Energy consistency conditions for standard impacts. Multibody Syst. Dyn.
**29**(1), 77–117 (2013) MathSciNetzbMATHCrossRefGoogle Scholar - 71.Christoph, G.: Energy consistency conditions for standard impacts. Multibody Syst. Dyn.
**32**(4), 445–509 (2014) MathSciNetzbMATHCrossRefGoogle Scholar - 72.Boulanger, G.: Sur le choc avec frottement des corps non parfaitement élastiques. Rev. Sci.
**77**, 325–327 (1939) zbMATHGoogle Scholar - 73.Routh, E.J., et al.: Dynamics of a System of Rigid Bodies. Dover, New York (1960) zbMATHGoogle Scholar
- 74.Shampine, L.F., Reichelt, M.W.: The Matlab ode suite. SIAM J. Sci. Comput.
**18**(1), 1–22 (1997) MathSciNetzbMATHCrossRefGoogle Scholar - 75.Dormand, J., Prince, P.: A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math.
**6**(1), 19–26 (1980) MathSciNetzbMATHCrossRefGoogle Scholar - 76.Liu, T.: Non-jamming conditions in multi-contact rigid-body dynamics. Multibody Syst. Dyn.
**22**(3), 269–295 (2009) MathSciNetzbMATHCrossRefGoogle Scholar - 77.Zhao, Z., Liu, C., Brogliato, B.: Energy dissipation and dispersion effects in granular media. Phys. Rev. E
**78**(3), 031307 (2008) MathSciNetCrossRefGoogle Scholar - 78.Liu, C., Zhao, Z., Brogliato, B.: Variable structure dynamics in a bouncing dimer. PhD dissertation, INRIA (2008) Google Scholar
- 79.Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. II. Numerical algorithm and simulation results. Proc. R. Soc. A, Math. Phys. Eng. Sci.,
**465**, 1–23 (2009) MathSciNetzbMATHCrossRefGoogle Scholar - 80.Peña, F., Prieto, F., Lourenço, P.B., Campos Costa, A., Lemos, J.V.: On the dynamics of rocking motion of single rigid-block structures. Earthq. Eng. Struct. Dyn.
**36**(15), 2383–2399 (2007) CrossRefGoogle Scholar - 81.Peña, F., Lourenço, P.B., Campos-Costa, A.: Experimental dynamic behavior of free-standing multi-block structures under seismic loadings. J. Earthq. Eng.
**12**(6), 953–979 (2008) CrossRefGoogle Scholar - 82.Giouvanidis, A., Dimitrakopoulos, I.: Modelling contact in rocking structures with a nonsmooth dynamics approach. In: ECCOMAS Congress 2016-Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering (2016) Google Scholar
- 83.Zhang, H., Brogliato, B., Liu, C.: Dynamics of planar rocking-blocks with coulomb friction and unilateral constraints: comparisons between experimental and numerical data. Multibody Syst. Dyn.
**32**(1), 1–25 (2014) MathSciNetCrossRefGoogle Scholar - 84.Zhang, H., Brogliato, B.: The planar rocking-block: analysis of kinematic restitution laws, and a new rigid-body impact model with friction. PhD dissertation, INRIA (2011) Google Scholar
- 85.Johnson, K.L., Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987) zbMATHGoogle Scholar
- 86.Wriggers, P., Zavarise, G.: Computational contact mechanics. In: Encyclopedia of Computational Mechanics (2004) Google Scholar
- 87.Jaeger, J.: New solutions in contact mechanics. Wit Pr/Computational Mechanics (2005) Google Scholar
- 88.Craig, J.: Introduction to Robotics: Mechanics and Control. Addison-Wesley Publishing Company, Inc., Boston (1989) zbMATHGoogle Scholar
- 89.Li, T.-Y.: Numerical solution of multivariate polynomial systems by homotopy continuation methods. Acta Numer.
**6**, 399–436 (1997) MathSciNetzbMATHCrossRefGoogle Scholar - 90.Morgan, A., Sommese, A.: Computing all solutions to polynomial systems using homotopy continuation. Appl. Math. Comput.
**24**(2), 115–138 (1987) MathSciNetzbMATHGoogle Scholar - 91.Lee, E., Mavroidis, C.: Solving the geometric design problem of spatial 3R robot manipulators using polynomial homotopy continuation. J. Mech. Des.
**124**(4), 652–661 (2002) Google Scholar - 92.Morgan, A., Sommese, A.: A homotopy for solving general polynomial systems that respects \(m\)-homogeneous structures. Appl. Math. Comput.
**24**(2), 101–113 (1987) MathSciNetzbMATHGoogle Scholar - 93.Wampler, C.W., Morgan, A., Sommese, A.: Numerical continuation methods for solving polynomial systems arising in kinematics. J. Mech. Des.
**112**(1), 59–68 (1990) Google Scholar - 94.Cox, D., Little, J., O’shea, D.: Ideals, Varieties, and Algorithms, vol. 3. Springer, Berlin (1992) zbMATHCrossRefGoogle Scholar
- 95.Cox, D.A., Little, J., O’shea, D.: Using Algebraic Geometry, vol. 185. Springer, Berlin (2006) zbMATHGoogle Scholar
- 96.Sturmfels, B.: Solving Systems of Polynomial Equations, vol. 97. American Mathematical Soc., Providence (2002) zbMATHGoogle Scholar
- 97.Kapur, D., Lakshman, Y.N.: Elimination methods: an introduction. In: Symbolic and Numerical Computation for Artificial Intelligence (1992) Google Scholar
- 98.Kapur, D.: Using Gröbner bases to reason about geometry problems. J. Symb. Comput.
**2**(4), 399–408 (1986) MathSciNetzbMATHCrossRefGoogle Scholar - 99.Manocha, D.: Solving systems of polynomial equations. IEEE Comput. Graph. Appl.
**14**(2), 46–55 (1994) MathSciNetCrossRefGoogle Scholar - 100.Kukelova, Z., Bujnak, M., Pajdla, T.: Polynomial eigenvalue solutions to minimal problems in computer vision. IEEE Trans. Pattern Anal. Mach. Intell.
**34**(7), 1381–1393 (2012) CrossRefGoogle Scholar - 101.Jónsson, G., Vavasis, S.: Accurate solution of polynomial equations using Macaulay resultant matrices. Math. Comput.
**74**(249), 221–262 (2005) MathSciNetzbMATHCrossRefGoogle Scholar - 102.Stiller, P.: An Introduction to the Theory of Resultants, Mathematics and Computer Science, T&M University, Texas, College Station, TX (1996) Google Scholar