Advertisement

Analysis of friction coupling and the Painlevé paradox in multibody systems

  • Albert PeiretEmail author
  • József Kövecses
  • Josep M. Font-Llagunes
Article

Abstract

Multibody models are useful to describe the macroscopic motion of the elements of physical systems. Modeling contact in such systems can be challenging, especially if friction at the contact interface is taken into account. Furthermore, the dynamics equations of multibody systems with contacts and Coulomb friction may become ill-posed due to friction coupling, as in the Painlevé paradox, where a solution for system dynamics may not be found. Here, the dynamics problem is considered following a general approach so that friction phenomena, such as dynamic jamming, can be analyzed. The effect of the contact forces on the velocity field of the system is the cornerstone of the proposed formulation, which is used to analyze friction coupling in multibody systems with a single contact. In addition, we introduce a new representation of the so-called generalized friction cone, a quadratic form defined in the contact velocity space. The geometry of this cone can be used to determine the critical cases where the solvability of the system dynamic equations can be compromised. Moreover, it allows for assessing friction coupling at the contact interface, and obtaining the values of the friction coefficient that can make the dynamics formulation inconsistent. Finally, the classical Painlevé example of a single rod and the multibody model of an articulated arm are used to illustrate how the proposed cone can detect the cases where the dynamic equations have no solution, or multiple solutions.

Keywords

Coulomb friction Friction coupling Painlevé paradox Generalized friction cone 

Notes

References

  1. 1.
    Berger, E.: Friction modeling for dynamic system simulation. Appl. Mech. Rev. 55(6), 535 (2002) CrossRefGoogle Scholar
  2. 2.
    Painlevé, P.: Sur les lois du frottement de glissement. C. R. Hebd. Séances Acad. Sci. 121, 112 (1895) zbMATHGoogle Scholar
  3. 3.
    Painlevé, P.: Sur les lois du frottement de glissement. C. R. Hebd. Séances Acad. Sci. 141, 401 (1905) zbMATHGoogle Scholar
  4. 4.
    Moreau, J.: Quadratic programming in mechanics: dynamics of one sided constraints. SIAM J. Control 4(1), 153 (1966) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lötstedt, P.: Mechanical systems of rigid bodies subject to unilateral constraints. SIAM J. Appl. Math. 42(2), 281 (1982) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lemke, C.: On complementary pivot theory. In: Mathematics of the Decision Sciences. Lectures in Applied Mathematics, vol. 2, p. 95 (1968) Google Scholar
  7. 7.
    Júdice, J., Pires, F.: Basic-set algorithm for a generalized linear complementarity problem. J. Optim. Theory Appl. 74(3), 391 (1992) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Murty, K.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann, Berlin (1988) zbMATHGoogle Scholar
  9. 9.
    Brogliato, B.: Nonsmooth Mechanics. Springer, Berlin (1999) CrossRefzbMATHGoogle Scholar
  10. 10.
    Panagiotopoulos, P.D.: In: Hemivariational Inequalities, pp. 99–134. Springer, Berlin (1993) CrossRefGoogle Scholar
  11. 11.
    Glocker, C.: Set-Valued Force Laws. Springer, Troy, New York, USA (2001) CrossRefzbMATHGoogle Scholar
  12. 12.
    Stewart, D.E., Trinkle, J.C.: An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction. Int. J. Numer. Methods Eng. 39, 2673 (1996) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 14, 231 (1997) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lötstedt, P.: Coulomb friction in two-dimensional rigid body systems. Z. Angew. Math. Mech. 61(12), 605 (1981) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, New York (1996) CrossRefzbMATHGoogle Scholar
  16. 16.
    Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Rev. 42, 3 (2000) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Acary, V., Cadoux, F., Lemaréchal, C., Malick, J.: A formulation of the linear discrete coulomb friction problem via convex optimization. Z. Angew. Math. Mech. 91(2), 155 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kaufman, D.M., Sueda, S., James, D.L., Pai, D.K.: Staggered projections for frictional contact in multibody systems. ACM Trans. Graph. 27(5), 164 (2008) CrossRefGoogle Scholar
  19. 19.
    Anitescu, M., Tasora, A.: An iterative approach for cone complementarity problems for nonsmooth dynamics. Comput. Optim. Appl. 47(2), 207 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    De Saxcé, G., Feng, Z.Q.: The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms. Math. Comput. Model. 28(4–8), 225 (1998) MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Li, J., Daviet, G., Narain, R., Bertails-Descoubes, F., Overby, M., Brown, G.E., Boissieux, L.: An implicit frictional contact solver for adaptive cloth simulation. ACM Trans. Graph. 37(4), 52 (2018) Google Scholar
  22. 22.
    Charles, A., Ballard, P.: The formulation of dynamical contact problems with friction in the case of systems of rigid bodies and general discrete mechanical systems—Painlevé and kane paradoxes revisited. Z. Angew. Math. Phys. 67(4), 99 (2016) CrossRefzbMATHGoogle Scholar
  23. 23.
    Moreau, J.J.: In: Nonsmooth Mechanics and Applications. CISM Courses & Lectures, pp. 1–82. Springer, Berlin (1988) CrossRefGoogle Scholar
  24. 24.
    Batlle, J.A.: On Newton’s and Poisson’s rules of percussive dynamics. J. Appl. Mech. 60(2), 376 (1993) CrossRefzbMATHGoogle Scholar
  25. 25.
    Zhao, Z., Liu, C., Ma, W., Chen, B.: Experimental investigation of the Painlevé paradox in a robotic system. J. Appl. Mech. 75(4), 041006 (2008) CrossRefGoogle Scholar
  26. 26.
    Batlle, J.A., Cardona, S.: The jamb (self-locking) process in three-dimensional collisions. J. Appl. Mech. 65(2), 417 (1998) CrossRefGoogle Scholar
  27. 27.
    Stronge, W.J.: In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 431, pp. 169–181. The Royal Society, London (1990) Google Scholar
  28. 28.
    Génot, F., Brogliato, B.: New results on Painlevé paradoxes. Tech. Rep. RR-3366, INRIA (1998). https://hal.inria.fr/inria-00073323
  29. 29.
    Stewart, D.E.: Convergence of a time-stepping scheme for rigid-body dynamics and resolution of Painlevé’s problem. Arch. Ration. Mech. Anal. 145(3), 215 (1998) MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Shen, Y., Stronge, W.: Painlevé paradox during oblique impact with friction. Eur. J. Mech. A, Solids 30(4), 457 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Leine, R.I., Brogliato, B., Nijmeijer, H.: Periodic motion and bifurcations induced by the Painlevé paradox. Eur. J. Mech. A, Solids 21(5), 869 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Or, Y., Rimon, E.: Investigation of Painlevé’s paradox and dynamic jamming during mechanism sliding motion. Nonlinear Dyn. 67(2), 1647 (2012) CrossRefzbMATHGoogle Scholar
  33. 33.
    Erdmann, M.: On a representation of friction in configuration space. Int. J. Robot. Res. 13(3), 240 (1994) CrossRefGoogle Scholar
  34. 34.
    Flores, P.: Concepts and Formulations for Spatial Multibody Dynamics. Springer, Berlin (2015) CrossRefzbMATHGoogle Scholar
  35. 35.
    Wit, C.C.D., Olsson, H., Astrom, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40(3), 419 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Kövecses, J.: Dynamics of mechanical systems and the generalized free-body diagram—Part I: general formulation. J. Appl. Mech. 75, 061012 (2008) CrossRefGoogle Scholar
  37. 37.
    Kövecses, J., Font-Llagunes, J.M.: An eigenvalue problem for the analysis of variable topology mechanical systems. J. Comput. Nonlinear Dyn. 4(3), 031006 (2009) CrossRefGoogle Scholar
  38. 38.
    Font-Llagunes, J.M., Barjau, A., Pàmies-Vilà, R., Kövecses, J.: Dynamic analysis of impact in swing-through crutch gait using impulsive and continuous contact models. Multibody Syst. Dyn. 28(3), 257 (2012) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Centre for Intelligent MachinesMcGill UniversityMontrealCanada
  2. 2.Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical EngineeringUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations