Advertisement

Multibody System Dynamics

, Volume 45, Issue 4, pp 431–455 | Cite as

Virtual-base modeling and coordinated control of a dual-arm space robot for target capturing and manipulation

  • Lei Yan
  • Wenfu XuEmail author
  • Zhonghua Hu
  • Bin Liang
Article
  • 296 Downloads

Abstract

A dual-arm space robotic system has large potential in on-orbit servicing missions, such as satellite repairing, large space structure construction and space debris removal. However, there exist multiple dynamic couplings between the base, the manipulators and the target, bringing large challenge to the motion planning and control. In this paper, a virtual-base modeling method (VBM) and coordinated control strategy are proposed for a dual-arm space robot. One of the arms’ end-effector is considered as the virtual base, and the other bodies, including each link of the arms and the center body of the spacecraft, form a combined manipulator. Correspondingly, we derive the kinematic and dynamic equations of the combined manipulator with the virtual base, taking it as a hyper-redundant space manipulator. Furthermore, the coordinated trajectory planning and control methods are presented for capturing and manipulating a space target. For the pre-contact stage, the virtual base and end-effector are controlled simultaneously to track the desired trajectory in the inertial space. During contact, the operational force is regulated using admittance control law, by simplifying the operational forces of the two arms as the equivalent operational force of the combined manipulator. After the target is captured and fixed to the two arms, its pose is adjusted by simultaneously controlling the trajectory and the operational force of the virtual base and the combined manipulator. Finally, a co-simulation system is created based on MATLAB/Simulink and MSC.ADAMS. Simulation results verify the effectiveness and robustness of the proposed methods.

Keywords

Space robot Virtual base modeling Generalized Jacobian Reactionless motion Dual-arm coordinated control 

Nomenclature

\(\boldsymbol{a}_{i}^{k},\boldsymbol{b}_{i}^{k}\):

Position vectors from \({J}_{i}^{k}\) to \({C}_{i}^{k}\) and \({C}_{i}^{k}\) to \({J}_{i + 1}^{k}\)

\(\boldsymbol{b}_{0}^{k}\):

Position vector from the CM of base \({B}_{0}\) to joint \({J}_{1}^{k}\)

\({C}_{i}^{k}\):

Center of mass (CM) of rigid body \({B}_{i}^{k}\)

\(\boldsymbol{E}_{n}, \boldsymbol{O}_{n}\):

\(n\times n\) identity and zero matrices

\(\boldsymbol{I}_{0},\boldsymbol{I}_{i}^{k}\):

Inertia matrices of \({B}_{0}\) and \({B}_{i}^{k}\) with respect to the CM coordinate system of each body

\({J}_{i}^{k}\):

the \(i\)th joint of Arm-\(k\)

\(M\):

Total mass of the system

\(m_{0}, m_{i}^{k}\):

Masses of \({B}_{0}\) and \({B}_{i}^{k}\)

\(\boldsymbol{p}_{i}^{k},\boldsymbol{p}_{e}^{k}\):

Position vectors of \({J}_{i}^{k}\) and Arm-\(k\)’s end-effector

\(\boldsymbol{r}_{g}\):

Position vector of the system’s CM

\(\boldsymbol{r}_{0},\boldsymbol{r}_{i}^{k}\):

Position vectors of the base’s CM and \({C}_{i}^{k}\)

\(\boldsymbol{\varTheta}^{k}\):

Generalized coordinates of Arm-\(k\)

\(\boldsymbol{v}_{0}, \boldsymbol{\omega}_{0}\):

Linear and angular velocities of \({B}_{0}\)

\(\boldsymbol{v}_{i}^{k}, \boldsymbol{\omega}_{i}^{k}\):

Linear and angular velocities of \({B}_{i}^{k}\)

\(\boldsymbol{v}_{e}^{k}, \boldsymbol{\omega}_{e}^{k}\):

Linear and angular velocities of end-effectors

\(\boldsymbol{\psi}_{0},\boldsymbol{\psi}_{e}^{k}\):

Euler angles of the base and end-effector of Arm-\(k\) (\(k=a\), \(b\), \(c\))

Note that unless specified, the vectors with superscript \(a\), \(b\), \(c\) represent the vectors corresponding to Arm-\(a\), Arm-\(b\) and the combined manipulator, respectively.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61573116, U1613227), Guangdong Special Support Program (Grant No. 2017TX04X0071) and Shenzhen Key Lab Fund of Mechanisms and Control in Aerospace (Grant No. ZDSYS201703031002066).

Conflict of interest and ethical standard statement

YAN, XU, HU and LIANG declare that they have no proprietary, financial, professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled “Virtual-base modeling and coordinated control of a dual-arm space robot for target capturing and manipulation”.

The work described has not been submitted elsewhere for publication, in whole or in part, and all the authors listed have approved the manuscript that is enclosed. We have read and have abided by the statement of ethical standards for manuscripts submitted to Multibody System Dynamics.

References

  1. 1.
    Liou, J.-C., Johnson, N.L., Hill, N.: Controlling the growth of future LEO debris populations with active debris removal. Acta Astronaut. 66(5), 648–653 (2010) CrossRefGoogle Scholar
  2. 2.
    Bonnal, C., Ruault, J.-M., Desjean, M.-C.: Active debris removal: recent progress and current trends. Acta Astronaut. 85(Supplement C), 51–60 (2013) CrossRefGoogle Scholar
  3. 3.
    Forshaw, J.L., Aglietti, G.S., Navarathinam, N., Kadhem, H., Salmon, T., Pisseloup, A., et al.: RemoveDEBRIS: an in-orbit active debris removal demonstration mission. Acta Astronaut. 127(1), 448–463 (2016) CrossRefGoogle Scholar
  4. 4.
    Shan, M., Guo, J., Gill, E.: Review and comparison of active space debris capturing and removal methods. Prog. Aerosp. Sci. 80(1), 18–32 (2016) CrossRefGoogle Scholar
  5. 5.
    Xu, W., Liang, B., Li, B., Xu, Y.: A universal on-orbit servicing system used in the geostationary orbit. Adv. Space Res. 48(1), 95–119 (2011) CrossRefGoogle Scholar
  6. 6.
    Shan, M., Guo, J., Gill, E.: Deployment dynamics of tethered-net for space debris removal. Acta Astronaut. 132(1), 293–302 (2017) CrossRefGoogle Scholar
  7. 7.
    Huang, P., Hu, Z., Zhang, F.: Dynamic modelling and coordinated controller designing for the manoeuvrable tether-net space robot system. Multibody Syst. Dyn. 36(2), 115–141 (2016) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Flores-Abad, A., Ma, O., Pham, K., Ulrich, S.: A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 68(1), 1–26 (2014) CrossRefGoogle Scholar
  9. 9.
    Vafa, Z., Dubowsky, S.: The kinematics and dynamics of space manipulators: the virtual manipulator approach. Int. J. Robot. Res. 9(4), 3–21 (1990) CrossRefGoogle Scholar
  10. 10.
    Dubowsky, S., Papadopoulos, E.: The kinematics, dynamics, and control of free-flying and free-floating space robotic systems. IEEE Trans. Robot. Autom. 9(5), 531–543 (1993) CrossRefGoogle Scholar
  11. 11.
    Xu, W., Wang, X., Xue, Q., Liang, B.: Study on trajectory planning of dual-arm space robot keeping the base stabilized. Acta Autom. Sin. 39(1), 69–80 (2013) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Xu, W., Meng, D., Chen, Y., Qian, H., Xu, Y.: Dynamics modeling and analysis of a flexible-base space robot for capturing large flexible spacecraft. Multibody Syst. Dyn. 32(3), 357–401 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Liu, X.-F., Li, H.-Q., Chen, Y.-J., Cai, G.-P., Wang, X.: Dynamics and control of capture of a floating rigid body by a spacecraft robotic arm. Multibody Syst. Dyn. 33(3), 315–332 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Yoshida, K., Kurazume, R., Umetani, Y.: Dual arm coordination in space free-flying robot. In: Proceedings of the IEEE International Conference on Robotics and Automation, CA, USA, pp. 2516–2521 (1991) Google Scholar
  15. 15.
    Giordano, A.M., Garofalo, G., De Stefano, M., Ott, C., Albu-Schäffer, A.: Dynamics and control of a free-floating space robot in presence of nonzero linear and angular momenta. In: Proceedings of the IEEE Conference on Decision and Control, Las Vegas, NV, USA, pp. 7527–7534 (2016) Google Scholar
  16. 16.
    Sone, H., Nenchev, D.: Reactionless camera inspection with a free-flying space robot under reaction null-space motion control. Acta Astronaut. 128(1), 707–721 (2016) CrossRefGoogle Scholar
  17. 17.
    Nguyen-Huynh, T.C., Sharf, I.: Adaptive reactionless motion and parameter identification in postcapture of space debris. J. Guid. Control Dyn. 36(2), 404–414 (2013) CrossRefGoogle Scholar
  18. 18.
    Arechavaleta, G., Morales-Díaz, A., Pérez-Villeda, H.M., Castelán, M.: Hierarchical task-based control of multirobot systems with terminal attractors. IEEE Trans. Control Syst. Technol. 25(1), 334–341 (2017) CrossRefGoogle Scholar
  19. 19.
    Yan, L., Mu, Z., Xu, W.: Base centroid virtual manipulator modeling and applications for multi-arm space robots. In: Proceedings of the International Conference on Control Automation Robotics & Vision, pp. 1542–1547 (2014) Google Scholar
  20. 20.
    Hogan, N.: Impedance control: an approach to manipulation. In: Proceedings of the American Control Conference, San Diego, CA, USA, pp. 304–313 (1984) Google Scholar
  21. 21.
    Yan, L., Mu, Z., Xu, W., Yang, B.: Coordinated compliance control of dual-arm robot for payload manipulation: master-slave and shared force control. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, South Korea, pp. 2697–2702 (2016) Google Scholar
  22. 22.
    Tinós, R., Terra, M.H., Ishihara, J.Y.: Motion and force control of cooperative robotic manipulators with passive joints. IEEE Trans. Control Syst. Technol. 14(4), 725–734 (2006) CrossRefGoogle Scholar
  23. 23.
    Moosavian, S.A.A., Rastegari, R.: Force tracking in multiple impedance control of space free-flyers. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu, Japan, pp. 1646–1651 (2000) Google Scholar
  24. 24.
    Abiko, S., Lampariello, R., Hirzinger, G.: Impedance control for a free-floating robot in the grasping of a tumbling target with parameter uncertainty. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 1020–1025 (2006) Google Scholar
  25. 25.
    Pathak, P.M., Mukherjee, A., Dasgupta, A.: Impedance control of space robots using passive degrees of freedom in controller domain. J. Dyn. Syst. Meas. Control 127(4), 564–578 (2005) CrossRefGoogle Scholar
  26. 26.
    Nakanishi, H., Yoshida, K.: Impedance control for free-flying space robots-basic equations and applications. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 3137–3142 (2006) Google Scholar
  27. 27.
    Yoshida, K., Dimitrov, D., Nakanishi, H.: On the capture of tumbling satellite by a space robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 4127–4132 (2006) Google Scholar
  28. 28.
    Uyama, N., Nakanishi, H., Nagaoka, K., Yoshida, K.: Impedance-based contact control of a free-flying space robot with a compliant wrist for non-cooperative satellite capture. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, pp. 4477–4482 (2012) Google Scholar
  29. 29.
    Stolfi, A., Gasbarri, P., Sabatini, M.: A combined impedance-PD approach for controlling a dual-arm space manipulator in the capture of a non-cooperative target. Acta Astronaut. 139(1), 243–253 (2017) CrossRefGoogle Scholar
  30. 30.
    Jung, S., Hsia, T.C., Bonitz, R.G.: Force tracking impedance control of robot manipulators under unknown environment. IEEE Trans. Control Syst. Technol. 12(3), 474–483 (2004) CrossRefGoogle Scholar
  31. 31.
    Li, Y., Ge, S.S.: Impedance learning for robots interacting with unknown environments. IEEE Trans. Control Syst. Technol. 22(4), 1422–1432 (2014) CrossRefGoogle Scholar
  32. 32.
    Yan, L., Yuan, H., Xu, W., Hu, Z., Liang, B.: Generalized relative Jacobian matrix of space robot for dual-arm coordinated capture. J. Guid. Control Dyn. 41(5), 1202–1208 (2018) CrossRefGoogle Scholar
  33. 33.
    Kreutz-Delgado, K., Long, M., Seraji, H.: Kinematic analysis of 7-DOF manipulators. Int. J. Robot. Res. 11(5), 469–481 (1992) CrossRefGoogle Scholar
  34. 34.
    Buss, M., Hashimoto, H., Moore, J.B.: Dextrous hand grasping force optimization. IEEE Trans. Robot. Autom. 12(3), 406–418 (1996) CrossRefGoogle Scholar
  35. 35.
    Xu, W., Liu, Y., Xu, Y.: The coordinated motion planning of a dual-arm space robot for target capturing. Robotica 30(5), 755–771 (2012) CrossRefGoogle Scholar
  36. 36.
    Stolfi, A., Gasbarri, P., Sabatini, M.: A parametric analysis of a controlled deployable space manipulator for capturing a non-cooperative flexible satellite. Acta Astronaut. 148, 317–326 (2018) CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Mechanical Engineering and AutomationHarbin Institute of TechnologyShenzhenChina
  2. 2.Department of AutomationTsinghua UniversityBeijingChina

Personalised recommendations