Multibody System Dynamics

, Volume 44, Issue 1, pp 1–29 | Cite as

Skeletal-level control-based forward dynamic analysis of acquired healthy and assisted gait motion

  • F. Mouzo
  • U. Lugris
  • R. Pamies-Vila
  • J. CuadradoEmail author


Gait analysis is commonly addressed through inverse dynamics. However, forward dynamics can be advantageous when descending to muscular level, as it allows activation and contraction equations to be integrated with motion thus providing better dynamic consistency, or when studying assisted gait, as it enables the estimation of the interaction forces between subject and devices even if the motion capture process doesn’t provide enough resolution to distinguish the motions of limb and device. Control-based methods seem to be the most natural choice to carry out the forward-dynamics analysis of an acquired gait, but several options exist in their application. The paper explores such options for healthy and assisted gait, and concludes that the computed torque control of all the subject’s degrees of freedom is the alternative that provides the most accurate results. Moreover, the study of its more problematic underactuated variant accompanied by contact models showed to be connected to neighbor challenging topics as gait prediction or walking simulation of humanoids.


Multibody dynamics Human models Gait simulation Forward dynamics Underactuated systems Contact models Assistive devices 


Compliance with Ethical Standards

Research involving human participants: This study was approved by the institutional ethical committee.

Informed consent: All participants in the experiments gave their informed consent.

Funding: This study was funded by the Spanish Ministry of Economy and Competitiveness (MINECO) under project DPI2015-65959-C3-1-R, cofinanced by the European Union through EFRD program.

Conflict of interest: J. Cuadrado is a member of the Editorial Board of the journal Multibody System Dynamics. The remaining authors have no conflict of interest.


  1. 1.
    Winter, D.A.: Biomechanics and Motor Control of Human Movement, 3rd edn. Wiley, New York (2005) Google Scholar
  2. 2.
    Abdel-Malek, K.A., Arora, J.S.: Human Motion Simulation. Academic Press, San Diego (2013) Google Scholar
  3. 3.
    Riemer, R., Hsiao-Wecksler, E.T.: Improving net joint torque calculations through a two-step optimization method for estimating body segment parameters. J. Biomech. Eng. 131(1), 011007 (2009) Google Scholar
  4. 4.
    Holmberg, L.J., Klarbring, A.: Muscle decomposition and recruitment criteria influence muscle force estimates. Multibody Syst. Dyn. 28(3), 283–289 (2012) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Thelen, D.G., Anderson, F.C.: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J. Biomech. 39, 1107–1115 (2006) CrossRefGoogle Scholar
  6. 6.
    Michaud, F., Lugris, U., Ou, Y., Cuadrado, J., Kecskemethy, A.: Influence of muscle recruitment criteria on joint reaction forces during human gait. In: ECCOMAS Thematic Conference on Multibody Dynamics, Barcelona, Spain (2015) Google Scholar
  7. 7.
    Quental, C., Folgado, J., Ambrosio, J.: A window moving inverse dynamics optimization for biomechanics of motion. Multibody Syst. Dyn. 38(2), 157–171 (2016) CrossRefGoogle Scholar
  8. 8.
    Quental, C., Azevedo, M., Ambrosio, J., Gonçalves, S.B., Folgado, J.: Influence of the musculotendon dynamics on the muscle force sharing problem of the shoulder: a fully inverse dynamics approach. J. Biomed. Eng. 140(7), 071005 (2018) CrossRefGoogle Scholar
  9. 9.
    Ackermann, M., Schiehlen, W.: Physiological methods to solve the force-sharing problem in biomechanics. In: Bottasso, C.L. (ed.) Multibody Dynamics—Computational Methods and Applications, pp. 1–24. Springer, Berlin (2009) Google Scholar
  10. 10.
    Silva, P.C., Silva, M.T., Martins, J.M.: Evaluation of the contact forces developed in the lower limb/orthosis interface for comfort design. Multibody Syst. Dyn. 24(3), 367–388 (2010) CrossRefzbMATHGoogle Scholar
  11. 11.
    Dallali, H., Mosadeghzad, M., Medrano-Cerda, G.A., Docquier, N., Kormushev, P., Tsagarakis, N., Li, Z., Caldwell, D.: Development of a dynamic simulator for a compliant humanoid robot based on a symbolic multibody approach. In: IEEE Int. Conference on Mechatronics, ICM, Vicenza, Italy (2013) Google Scholar
  12. 12.
    Ackermann, M., van den Bogert, A.J.: Optimality principles for model-based prediction of human gait. J. Biomech. 43(6), 1055–1060 (2010) CrossRefGoogle Scholar
  13. 13.
    Vaughan, C.L., Davis, B.L., O’Connor, J.C.: Dynamics of Human Gait, 2nd edn. Kiboho Publishers, Cape Town (1999) Google Scholar
  14. 14.
    Ambrosio, J.A.C., Kecskemethy, A.: Multibody dynamics of biomechanical models for human motion via optimization. In: Garcia Orden, J.C., Goicolea, J.M., Cuadrado, J. (eds.) Multibody Dynamics—Computational Methods and Applications, pp. 245–270. Springer, Berlin (2007) Google Scholar
  15. 15.
    Lugris, U., Carlin, J., Luaces, A., Cuadrado, J.: Gait analysis system for spinal cord injured subjects assisted by active orthoses and crutches. J. Multi-Body Dyn. 227(4), 363–374 (2013) Google Scholar
  16. 16., Library of Computational Benchmark Problems (problem Gait 2D)
  17. 17.
    Garcia de Jalon, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems. Springer, New York (1994) CrossRefGoogle Scholar
  18. 18.
    Gupta, K.C.: Mechanics and Control of Robots. Springer, New York (1997) Google Scholar
  19. 19.
    Seifried, R.: Integrated mechanical and control design of underactuated multibody systems. Nonlinear Dyn. 67, 1539–1557 (2012) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Blajer, W.: The use of servo-constraints in the inverse dynamics analysis of underactuated multibody systems. J. Comput. Nonlinear Dyn. 9(4), 041008 (2014) CrossRefGoogle Scholar
  21. 21.
    Seth, A., Pandy, M.G.: A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement. J. Biomech. 40, 356–366 (2007) CrossRefGoogle Scholar
  22. 22.
    Lugris, U., Carlin, J., Pamies-Vila, R., Font-Llagunes, J.M., Cuadrado, J.: Solution methods for the double-support indeterminacy in human gait. Multibody Syst. Dyn. 30(3), 247–263 (2013) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Shourijeh, M.S., McPhee, J.: Foot–ground contact modeling within human gait simulations: from Kelvin–Voigt to hyper-volumetric models. Multibody Syst. Dyn. 35(4), 393–407 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hansen, N.: The CMA evolution strategy: a comparing review. Stud. Fuzziness Soft Comput. 192, 75–102 (2006) CrossRefGoogle Scholar
  25. 25.
    Dopico, D., Luaces, A., Gonzalez, M., Cuadrado, J.: Dealing with multiple contacts in a human-in-the-loop application. Multibody Syst. Dyn. 25(2), 167–183 (2011) MathSciNetCrossRefGoogle Scholar
  26. 26.
    Flores, P., Machado, M., Silva, M.T., Martins, J.M.: On the continuous contact force model for soft materials in multibody dynamics. Multibody Syst. Dyn. 25(3), 357–375 (2011) CrossRefzbMATHGoogle Scholar
  27. 27.
    Englsberger, J., Ott, C., Albu-Schäffer, A.: Three-dimensional bipedal walking control based on divergent component of motion. IEEE Trans. Robot. 31(2), 355–368 (2015) CrossRefGoogle Scholar
  28. 28.
    Dehghani, R., Fattah, A., Abedi, E.: Cyclic gait planning and control of a five-link biped robot with four actuators during single support and double support phases. Multibody Syst. Dyn. 33(4), 389–411 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wang, J.M., Hamner, S.R., Delp, S.L., Koltun, V.: Optimizing locomotion controllers using biologically-based actuators and objectives. ACM Trans. Graph. 31(4), 25 (2012) Google Scholar
  30. 30.
    Geijtenbeek, T., van de Panne, M., van der Stappen, A.F.: Flexible muscle-based locomotion for bipedal creatures. ACM Trans. Graph. 32(6), 206 (2013) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Escuela Politecnica SuperiorUniversity of La CoruñaFerrolSpain
  2. 2.Dept. of Mechanical EngineeringUniversitat Politecnica de CatalunyaBarcelonaSpain

Personalised recommendations