Advertisement

Strain effects on collagen proteolysis in heart valve tissues

  • Kaitlyn Barbour
  • Hsiao-Ying Shadow HuangEmail author
Article
  • 26 Downloads

Abstract

Collagen is at the heart of any and all questions concerning semilunar valvular leaflet composition, structure, and function. Whether during development, physiological homeostasis, or pathological degeneration, it is the structural-mechanical state of the heart valve leaflet collagen network that ultimately confers valvular function, and the difference between health and disease. In the current study, the effects of physiologically relevant strain states on collagen catabolism are investigated in porcine aortic and pulmonary valve leaflets. Application of bacterial collagenase to the tissues which acts to simulate collagen degradation by endogenous matrix metalloproteinases, biaxial stress relaxation, and histology are all used to serve as measures of functional and compositional collagen catabolism. Current stress-relaxation results are used in conjunction with previous equibiaxial testing to confirm that a mechanism exists to prevent collagen catabolism when stretched at physiologically relevant strain states. Collectively, these in vitro results indicate that biaxial strain states are capable of impacting the susceptibility of valvular collagens to catabolism, and that at physiological strain states, a protective mechanism exists to effectively block collagen catabolism. The results of the study will be broadly applicable to clarify the roles of tissue microarchitecture and load transmission in a variety of other developmental, homeostatic, or pathogenic tissue processes such as tumor growth, embryogenesis, thrombi formation, and atherogenesis.

Keywords

Physiological strains Biomechanical testing or analysis Tissue biomechanics Stress relaxation 

Notes

References

  1. Adhikari, A.S., Chai, J., Dunn, A.R.: Mechanical load induces a 100-fold increase in the rate of collagen proteolysis by MMP-1. J. Am. Chem. Soc. 133(6), 1686–1689 (2011).  https://doi.org/10.1021/ja109972p CrossRefGoogle Scholar
  2. Aldous, I.G., Veres, S.P., Jahangir, A., Lee, J.M.: Differences in collagen cross-linking between the four valves of the bovine heart: a possible role in adaptation to mechanical fatigue. Am. J. Physiol., Heart Circ. Physiol. 296(6), 1898–1906 (2009).  https://doi.org/10.1152/ajpheart.01173.2008 CrossRefGoogle Scholar
  3. Anssari-Benam, A., Bader, D.L., Screen, H.R.: Anisotropic time-dependant behaviour of the aortic valve. J. Mech. Behav. Biomed. Mater. 4(8), 1603–1610 (2011).  https://doi.org/10.1016/j.jmbbm.2011.02.010 CrossRefGoogle Scholar
  4. Anssari-Benam, A., Gupta, H.S., Screen, H.R.C.: Strain transfer through the aortic valve. J. Biomech. Eng. 134(6), 061003 (2012).  https://doi.org/10.1115/1.4006812 CrossRefGoogle Scholar
  5. Balachandran, K., Konduri, S., Sucosky, P., Jo, H., Yoganathan, A.P.: An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch. Ann. Biomed. Eng. 34(11), 1655–1665 (2006).  https://doi.org/10.1007/s10439-006-9167-8 CrossRefGoogle Scholar
  6. Balachandran, K., Sucosky, P., Jo, H., Yoganathan, A.P.: Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. Am. J. Physiol., Heart Circ. Physiol. 296(3), H756 (2009).  https://doi.org/10.1152/ajpheart.00900.2008 CrossRefGoogle Scholar
  7. Banerjee, T., Mukherjee, S., Ghosh, S., Biswas, M., Dutta, S., Pattari, S., Chatterjee, S., Bandyopadhyay, A.: Clinical significance of markers of collagen metabolism in rheumatic mitral valve disease. PLoS ONE 9(3), e90527 (2014).  https://doi.org/10.1371/journal.pone.0090527 CrossRefGoogle Scholar
  8. Benjamin, E.J., Blaha, M.J., Chiuve, S.E., Cushman, M., Das, S.R., Deo, R., de Ferranti, S.D., Floyd, J., Fornage, M., Gillespie, C., Isasi, C.R., Jimenez, M.C., Jordan, L.C., Judd, S.E., Lackland, D., Lichtman, J.H., Lisabeth, L., Liu, S., Longenecker, C.T., Mackey, R.H., Matsushita, K., Mozaffarian, D., Mussolino, M.E., Nasir, K., Neumar, R.W., Palaniappan, L., Pandey, D.K., Thiagarajan, R.R., Reeves, M.J., Ritchey, M., Rodriguez, C.J., Roth, G.A., Rosamond, W.D., Sasson, C., Towfighi, A., Tsao, C.W., Turner, M.B., Virani, S.S., Voeks, J.H., Willey, J.Z., Wilkins, J.T., Wu, J.H., Alger, H.M., Wong, S.S., Muntner, P. (American Heart Association Statistics Committee and Stroke Statistics Subcommittee): Heart disease and Stroke statistics-2017 update: a report from the American Heart Association. Circulation 135(10), e146–e603 (2017).  https://doi.org/10.1161/CIR.0000000000000485 CrossRefGoogle Scholar
  9. Bhole, A.P., Flynn, B.P., Liles, M., Saeidi, N., Dimarzio, C.A., Ruberti, J.W.: Mechanical strain enhances survivability of collagen micronetworks in the presence of collagenase: implications for load-bearing matrix growth and stability. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 367(1902), 3339–3362 (2009).  https://doi.org/10.1098/Rsta.2009.0093 CrossRefGoogle Scholar
  10. Camp, R.J., Liles, M., Beale, J., Saeidi, N., Flynn, B.P., Moore, E., Murthy, S.K., Ruberti, J.W.: Molecular mechanochemistry: low force switch slows enzymatic cleavage of human type I collagen monomer. J. Am. Chem. Soc. 133(11), 4073–4078 (2011).  https://doi.org/10.1021/Ja110098b CrossRefGoogle Scholar
  11. Carruthers, C.A., Alfieri, C.M., Joyce, E.M., Watkins, S.C., Yutzey, K.E., Sacks, M.S.: Gene expression and collagen fiber micromechanical interactions of the semilunar heart valve interstitial cell. Cell. Mol. Bioeng. 5(3), 254–265 (2012).  https://doi.org/10.1007/s12195-012-0230-2 CrossRefGoogle Scholar
  12. Chang, S.W., Flynn, B.P., Ruberti, J.W., Buehler, M.J.: Molecular mechanism of force induced stabilization of collagen against enzymatic breakdown. Biomaterials 33(15), 3852–3859 (2012).  https://doi.org/10.1016/j.biomaterials.2012.02.001 CrossRefGoogle Scholar
  13. Cole, W.G., Chan, D., Hickey, A.J., Wilcken, D.E.: Collagen composition of normal and myxomatous human mitral heart valves. Biochem. J. 219(2), 451–460 (1984) CrossRefGoogle Scholar
  14. Ellsmere, J.C., Khanna, R.A., Lee, J.M.: Mechanical loading of bovine pericardium accelerates enzymatic degradation. Biomaterials 20(12), 1143–1150 (1999) CrossRefGoogle Scholar
  15. Flynn, B.P., Bhole, A.P., Saeidi, N., Liles, M., Dimarzio, C.A., Ruberti, J.W.: Mechanical strain stabilizes reconstituted collagen fibrils against enzymatic degradation by mammalian collagenase matrix metalloproteinase 8 (MMP-8). PLoS ONE 5(8), e12337 (2010).  https://doi.org/10.1371/journal.pone.0012337 CrossRefGoogle Scholar
  16. Flynn, B.P., Tilburey, G.E., Ruberti, J.W.: Highly sensitive single-fibril erosion assay demonstrates mechanochemical switch in native collagen fibrils. Biomech. Model. Mechanobiol. 12(2), 291–300 (2013).  https://doi.org/10.1007/s10237-012-0399-2 CrossRefGoogle Scholar
  17. Fondard, O., Detaint, D., Iung, B., Choqueux, C., Adle-Biassette, H., Jarraya, M., Hvass, U., Couetil, J.P., Henin, D., Michel, J.B., Vahanian, A., Jacob, M.P.: Extracellular matrix remodelling in human aortic valve disease: the role of matrix metalloproteinases and their tissue inhibitors. Eur. Heart J. 26(13), 1333–1341 (2005).  https://doi.org/10.1093/eurheartj/ehi248 CrossRefGoogle Scholar
  18. Ghazanfari, S., Driessen-Mol, A., Bouten, C.V., Baaijens, F.P.: Modulation of collagen fiber orientation by strain-controlled enzymatic degradation. Acta Biomater. 35, 118–126 (2016).  https://doi.org/10.1016/j.actbio.2016.02.033 CrossRefGoogle Scholar
  19. Huang, S., Huang, H.-Y.S.: Biaxial stress relaxation of semilunar heart valve leaflets during simulated collagen catabolism: effects of collagenase concentration and equibiaxial strain-state. Proc. Inst. Mech. Eng., H J. Eng. Med. 229(10), 721–731 (2015).  https://doi.org/10.1177/0954411915604336 CrossRefGoogle Scholar
  20. Huang, C., Yannas, I.V.: Mechanochemical studies of enzymatic degradation of insoluble collagen-fibers. J. Biomed. Mater. Res. 11(1), 137–154 (1977).  https://doi.org/10.1002/jbm.820110113 CrossRefGoogle Scholar
  21. Huang, H.Y., Liao, J., Sacks, M.S.: In-situ deformation of the aortic valve interstitial cell nucleus under diastolic loading. J. Biomech. Eng. 129(6), 880 (2007).  https://doi.org/10.1115/1.2801670 CrossRefGoogle Scholar
  22. Huang, H.-Y.S., Balhouse, B.N., Huang, S.: Application of simple biomechanical and biochemical tests to heart valve leaflets: implications for heart valve characterization and tissue engineering. Proc. Inst. Mech. Eng., H J. Eng. Med. 226(H11), 868–876 (2012).  https://doi.org/10.1177/0954411912455004 CrossRefGoogle Scholar
  23. Huang, H.-Y.S., Huang, S., Frazier, C.P., Prim, P., Harrysson, O.: Directional mechanical property of porcine skin tissues. J. Mech. Med. Biol. 14(5), 1450069 (2014).  https://doi.org/10.1142/S0219519414500699 CrossRefGoogle Scholar
  24. Kheradvar, A., Groves, E.M., Dasi, L.P., Alavi, S.H., Tranquillo, R., Grande-Allen, K.J., Simmons, C.A., Griffith, B., Falahatpisheh, A., Goergen, C.J., Mofrad, M.R., Baaijens, F., Little, S.H., Canic, S.: Emerging trends in heart valve engineering: part I. Solutions for future. Ann. Biomed. Eng. 43(4), 833–843 (2015).  https://doi.org/10.1007/s10439-014-1209-z CrossRefGoogle Scholar
  25. Lacerda, C.M., Maclea, H.B., Kisiday, J.D., Orton, E.C.: Static and cyclic tensile strain induce myxomatous effector proteins and serotonin in canine mitral valves. J. Vet. Cardiol. 14(1), 223–230 (2012).  https://doi.org/10.1016/j.jvc.2011.12.002 CrossRefGoogle Scholar
  26. Lewinsohn, A.D., Anssari-Benham, A., Lee, D.A., Taylor, P.M., Chester, A.H., Yacoub, M.H., Screen, H.R.: Anisotropic strain transfer through the aortic valve and its relevance to the cellular mechanical environment. Proc. Inst. Mech. Eng. H 225(8), 821–830 (2011) CrossRefGoogle Scholar
  27. Merryman, W.D., Lukoff, H.D., Long, R.A., Engelmayr, G.C. Jr., Hopkins, R.A., Sacks, M.S.: Synergistic effects of cyclic tension and transforming growth factor-\(\beta1\) on the aortic valve myofibroblast. Cardiovasc. Pathol. 16(5), 268–276 (2007).  https://doi.org/10.1016/j.carpath.2007.03.006 CrossRefGoogle Scholar
  28. Nabeshima, Y., Grood, E.S., Sakurai, A., Herman, J.H.: Uniaxial tension inhibits tendon collagen degradation by collagenase in vitro. J. Orthop. Res. 14(1), 123–130 (1996).  https://doi.org/10.1002/jor.1100140120 CrossRefGoogle Scholar
  29. NIH: Heart and Vascular Diseases. Report. National Heart Lung and Blood Institute (2016) Google Scholar
  30. Perrotta, I., Sciangula, A., Aquila, S., Mazzulla, S.: Matrix metalloproteinase-9 expression in calcified human aortic valves: a histopathologic, immunohistochemical, and ultrastructural study. Appl. Immunohistochem. Mol. Morphol. (2014).  https://doi.org/10.1097/PAI.0000000000000144 Google Scholar
  31. Rabkin, E., Aikawa, M., Stone, J.R., Fukumoto, Y., Libby, P., Schoen, F.J.: Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104(21), 2525–2532 (2001) CrossRefGoogle Scholar
  32. Rabkin-Aikawa, E., Aikawa, M., Farber, M., Kratz, J.R., Garcia-Cardena, G., Kouchoukos, N.T., Mitchell, M.B., Jonas, R.A., Schoen, F.J.: Clinical pulmonary autograft valves: pathologic evidence of adaptive remodeling in the aortic site. J. Thorac. Cardiovasc. Surg. 128(4), 552–561 (2004).  https://doi.org/10.1016/j.jtcvs.2004.04.016 CrossRefGoogle Scholar
  33. Robitaille, M.C., Zareian, R., DiMarzio, C.A., Wan, K.T., Ruberti, J.W.: Small-angle light scattering to detect strain-directed collagen degradation in native tissue. Interface Focus 1(5), 767–776 (2011).  https://doi.org/10.1098/rsfs.2011.0039 CrossRefGoogle Scholar
  34. Rodriguez, K.J., Piechura, L.M., Porras, A.M., Masters, K.S.: Manipulation of valve composition to elucidate the role of collagen in aortic valve calcification. BMC Cardiovasc. Disord. 14(1), 29 (2014).  https://doi.org/10.1186/1471-2261-14-29 CrossRefGoogle Scholar
  35. Ruberti, J.W., Hallab, N.J.: Strain-controlled enzymatic cleavage of collagen in loaded matrix. Biochem. Biophys. Res. Commun. 336(2), 483–489 (2005).  https://doi.org/10.1016/j.bbrc.2005.08.128 CrossRefGoogle Scholar
  36. Sacks, M.S., Schoen, F.J.: Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J. Biomed. Mater. Res. 62(3), 359–371 (2002).  https://doi.org/10.1002/jbm.10293 CrossRefGoogle Scholar
  37. Sacks, M.S., Yoganathan, A.P.: Heart valve function: a biomechanical perspective. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 362(1484), 1369–1391 (2007).  https://doi.org/10.1098/rstb.2007.2122 CrossRefGoogle Scholar
  38. Sacks, M.S., Smith, D.B., Hiester, E.D.: A small angle light scattering device for planar connective tissue microstructural analysis. Ann. Biomed. Eng. 25(4), 678–689 (1997) CrossRefGoogle Scholar
  39. Schoen, F.J.: Morphology, clinicopathologic correlations, and mechanisms in heart valve health and disease. Cardiovasc. Eng. Technol. (2016).  https://doi.org/10.1007/s13239-016-0277-7 Google Scholar
  40. Schoen, F.J., Levy, R.J.: Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann. Thorac. Surg. 79(3), 1072–1080 (2005).  https://doi.org/10.1016/j.athoracsur.2004.06.033 CrossRefGoogle Scholar
  41. Stella, J.A., Liao, J., Sacks, M.S.: Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet. J. Biomech. 40(14), 3169–3177 (2007).  https://doi.org/10.1016/j.jbiomech.2007.04.001 CrossRefGoogle Scholar
  42. Thubrikar, M., Piepgrass, W.C., Deck, J.D., Nolan, S.P.: Stresses of natural versus prosthetic aortic valve leaflets in vivo. Ann. Thorac. Surg. 30(3), 230–239 (1980) CrossRefGoogle Scholar
  43. Thubrikar, M.J., Skinner, J.R., Eppink, R.T., Nolan, S.P.: Stress analysis of porcine bioprosthetic heart valves in vivo. J. Biomed. Mater. Res. 16, 811–826 (1982) CrossRefGoogle Scholar
  44. Thubrikar, M.J., Deck, J.D., Aouad, J., Nolan, S.P.: Role of mechanical stress in calcification of aortic bioprosthetic valves. J. Thorac. Cardiovasc. Surg. 86(1), 115–125 (1983) Google Scholar
  45. Thubrikar, M.J., Aouad, J., Nolan, S.P.: Comparison of the in vivo and in vitro mechanical properties of aortic valve leaflets. J. Thorac. Cardiovasc. Surg. 92(1), 29–36 (1986) Google Scholar
  46. van der Kamp, A.W., Nauta, J.: Fibroblast function and the maintenance of the aortic-valve matrix. Cardiovasc. Res. 13(3), 167–172 (1979) CrossRefGoogle Scholar
  47. Wyatt, K.E.K., Bourne, J.W., Torzilli, P.A.: Deformation-dependent enzyme mechanokinetic cleavage of type I collagen. J. Biomech. Eng. 131(5), 051004 (2009).  https://doi.org/10.1115/1.3078177 CrossRefGoogle Scholar
  48. Yip, C.Y.Y., Simmons, C.A.: The aortic valve microenvironment and its role in calcific aortic valve disease. Cardiovasc. Pathol. 20(3), 177–182 (2011).  https://doi.org/10.1016/j.carpath.2010.12.001 CrossRefGoogle Scholar
  49. Yip, C.Y.Y., Chen, J.-H., Zhao, R., Simmons, C.A.: Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler. Thromb. Vasc. Biol. 29(6), 936–942 (2009).  https://doi.org/10.1161/atvbaha.108.182394 CrossRefGoogle Scholar
  50. Zareian, R., Church, K.P., Saeidi, N., Flynn, B.P., Beale, J.W., Ruberti, J.W.: Probing collagen/enzyme mechanochemistry in native tissue with dynamic, enzyme-induced creep. Langmuir 26(12), 9917–9926 (2010).  https://doi.org/10.1021/la100384e CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Mechanical and Aerospace Engineering DepartmentNorth Carolina State UniversityRaleighUSA

Personalised recommendations