Advertisement

Mechanics of Time-Dependent Materials

, Volume 23, Issue 4, pp 465–476 | Cite as

Fractional order creep model for coral sand

  • Yifei SunEmail author
  • Cheng Chen
Article
  • 133 Downloads

Abstract

The creep of coral sand is a critical factor that needs to be considered in geotechnical design of engineering facilities along coastal areas. In this study, a new fractional order creep model for coral sand is developed by extending the previous work on fractional (visco)plasticity. Unlike traditional fractional creep models that use viscoelasticity, this model uses a fractional order flow rule to capture the creep behaviour of coral sand. To validate the proposed model, test results of coral sand from the available literature are simulated, where good agreement between the model predictions and test results is observed.

Keywords

Fractional order Creep History dependence Coral sand 

Notes

Acknowledgements

The financial support provided by the China Postdoctoral Science Foundation (Grant No. 2017M621607) and the Fundamental Research Funds for the Central Universities (Grant No. 2017B05214) are appreciated.

References

  1. Airey, D.W., Miao, G.: Compressibility and creep behaviour of a crushed carbonate sand. In: Geomechanics from Micro to Macro, pp. 1069–1074. CRC Press, London (2014) CrossRefGoogle Scholar
  2. Augustesen, A., Liingaard, M., Lade, P.V.: Evaluation of time-dependent behavior of soils. Int. J. Geomech. 4(3), 137–156 (2004) CrossRefGoogle Scholar
  3. Caputo, M.: Linear models of dissipation whose \(Q\) is almost frequency independent-II. Geophys. J. Int. 13(5), 529–539 (1967).  https://doi.org/10.1111/j.1365-246X.1967.tb02303.x CrossRefGoogle Scholar
  4. Gao, H., Chen, Y., Liu, H., Liu, J., Chu, J.: Creep behavior of EPS composite soil. Sci. China, Technol. Sci. 55(11), 3070–3080 (2012).  https://doi.org/10.1007/s11431-012-4967-6 CrossRefGoogle Scholar
  5. Ghiabi, H., Selvadurai, A.P.: Time-dependent mechanical behavior of a granular medium used in laboratory investigations. Int. J. Geomech. 9(1), 1–8 (2009).  https://doi.org/10.1061/(ASCE)1532-3641(2009)9:1(1) CrossRefGoogle Scholar
  6. Hei, X., Chen, W., Pang, G., Xiao, R., Zhang, C.: A new visco–elasto-plastic model via time–space fractional derivative. Mech. Time-Depend. Mater. 22(1), 129–141 (2017).  https://doi.org/10.1007/s11043-017-9356-x CrossRefGoogle Scholar
  7. Lade, P.V.: Creep effects on static and cyclic instability of granular soils. J. Geotech. Eng. 120(2), 404–419 (1994).  https://doi.org/10.1061/(ASCE)0733-9410(1994)120:2(404) CrossRefGoogle Scholar
  8. Lade, P.V., Karimpour, H.: Stress drop effects in time dependent behavior of quartz sand. Int. J. Solids Struct. 87, 167–182 (2016).  https://doi.org/10.1016/j.ijsolstr.2016.02.015 CrossRefGoogle Scholar
  9. Lei, D., Liang, Y., Xiao, R.: A fractional model with parallel fractional Maxwell elements for amorphous thermoplastics. Physica A 490, 465–475 (2018).  https://doi.org/10.1016/j.physa.2017.08.037 MathSciNetCrossRefGoogle Scholar
  10. Leoni, M., Karstunen, M., Vermeer, P.A.: Anisotropic creep model for soft soils. Geotechnique 58(3), 215–226 (2008).  https://doi.org/10.1680/geot.2008.58.3.215 CrossRefGoogle Scholar
  11. Liao, M., Lai, Y., Liu, E., Wan, X.: A fractional order creep constitutive model of warm frozen silt. Acta Geotech. 12(2), 377–389 (2016).  https://doi.org/10.1007/s11440-016-0466-4 CrossRefGoogle Scholar
  12. Liingaard, M., Augustesen, A., Lade Poul, V.: Characterization of models for time-dependent behavior of soils. Int. J. Geomech. 4(3), 157–177 (2004).  https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(157) CrossRefGoogle Scholar
  13. Liu, M., Gao, Y.: Constitutive modeling of coarse-grained materials incorporating the effect of particle breakage on critical state behavior in a framework of generalized plasticity. Int. J. Geomech. 17(5), 04016113 (2016).  https://doi.org/10.1061/(ASCE)GM.1943-5622.0000759 CrossRefGoogle Scholar
  14. Lv, Y., Li, F., Liu, Y., Fan, P., Wang, M.: Comparative study of coral sand and silica sand in creep under general stress states. Can. Geotech. J. 54, 1601–1611 (2016).  https://doi.org/10.1139/cgj-2016-0295 CrossRefGoogle Scholar
  15. Rahman, M.M., Lo, S.R., Baki, M.A.: Equivalent granular state parameter and undrained behaviour of sand–fines mixtures. Acta Geotech. 6(4), 183–194 (2011).  https://doi.org/10.1007/s11440-011-0145-4 CrossRefGoogle Scholar
  16. Schofield, A., Wroth, P.: Critical State Soil Mechanics. McGraw-Hill, London (1968) Google Scholar
  17. Seidalinov, G., Taiebat, M.: Bounding surface SANICLAY plasticity model for cyclic clay behavior. Int. J. Numer. Anal. Methods Geomech. 38(7), 702–724 (2014).  https://doi.org/10.1002/nag.2229 CrossRefGoogle Scholar
  18. Singh, A., Mitchell, J.K.: General stress–strain–time function for soils. J. Soil Mech. Found. Div. 95, 406–415 (1969) Google Scholar
  19. Sumelka, W.: Fractional viscoplasticity. Mech. Res. Commun. 56, 31–36 (2014).  https://doi.org/10.1016/j.mechrescom.2013.11.005 CrossRefGoogle Scholar
  20. Sumelka, W., Nowak, M.: Non-normality and induced plastic anisotropy under fractional plastic flow rule: a numerical study. Int. J. Numer. Anal. Methods Geomech. 40(5), 651–675 (2016).  https://doi.org/10.1002/nag.2421 CrossRefGoogle Scholar
  21. Sumelka, W., Nowak, M.: On a general numerical scheme for the fractional plastic flow rule. Mech. Mater. 116, 120–129 (2018).  https://doi.org/10.1016/j.mechmat.2017.02.005 CrossRefGoogle Scholar
  22. Sun, Y., Shen, Y.: Constitutive model of granular soils using fractional order plastic flow rule. Int. J. Geomech. 17(8), 04017025 (2017).  https://doi.org/10.1061/(ASCE)GM.1943-5622.0000904 CrossRefGoogle Scholar
  23. Sun, Y., Xiao, Y.: Fractional order plasticity model for granular soils subjected to monotonic triaxial compression. Int. J. Solids Struct. 118–119, 224–234 (2017).  https://doi.org/10.1016/j.ijsolstr.2017.03.005 CrossRefGoogle Scholar
  24. Sun, Y., Indraratna, B., Carter, J.P., Marchant, T., Nimbalkar, S.: Application of fractional calculus in modelling ballast deformation under cyclic loading. Comput. Geotech. 82, 16–30 (2017a).  https://doi.org/10.1016/j.compgeo.2016.09.010 CrossRefGoogle Scholar
  25. Sun, Y., Song, S., Xiao, Y., Zhang, J.: Development and application of state-dependent fractional plasticity in modeling the non-associated behavior of granular aggregates. Acta Mech. Solida Sin. 30(5), 507–519 (2017b).  https://doi.org/10.1016/j.camss.2017.09.002 CrossRefGoogle Scholar
  26. Sun, Y., Gao, Y., Shen, Y.: Mathematical aspect of the state-dependent stress-dilatancy of granular soil under triaxial loading. Geotechnique, 1–8 (2018a).  https://doi.org/10.1680/jgeot.17.t.029 CrossRefGoogle Scholar
  27. Sun, Y., Gao, Y., Zhu, Q.: Fractional order plasticity modelling of state-dependent behaviour of granular soils without using plastic potential. Int. J. Plast. (2018b).  https://doi.org/10.1016/j.ijplas.2017.12.001 CrossRefGoogle Scholar
  28. Vaid, Y.P., Chung, E.K.F., Kuerbis, R.H.: Stress path and steady state. Can. Geotech. J. 27(1), 1–7 (1990).  https://doi.org/10.1139/t90-001 CrossRefGoogle Scholar
  29. Verdugo, R., Ishihara, K.: The steady state of sandy soils. Soil Found. 36(2), 81–91 (1996) CrossRefGoogle Scholar
  30. Wang, Z., Dafalias, Y., Li, X., Makdisi, F.: State pressure index for modeling sand behavior. J. Geotech. Geoenviron. Eng. 128(6), 511–519 (2002).  https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(511) CrossRefGoogle Scholar
  31. Xiao, Y., Liu, H., Chen, Y., Jiang, J.: Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions. J. Eng. Mech. 140(4), 04014002 (2014a).  https://doi.org/10.1061/(ASCE)EM.1943-7889.0000702 CrossRefGoogle Scholar
  32. Xiao, Y., Liu, H., Chen, Y., Jiang, J.: Bounding surface plasticity model incorporating the state pressure index for rockfill materials. J. Eng. Mech. 140(11), 04014087 (2014b).  https://doi.org/10.1061/(ASCE)EM.1943-7889.0000802 CrossRefGoogle Scholar
  33. Xiao, R., Sun, H., Chen, W.: An equivalence between generalized Maxwell model and fractional Zener model. Mech. Mater. 100, 148–153 (2016).  https://doi.org/10.1016/j.mechmat.2016.06.016 CrossRefGoogle Scholar
  34. Xiao, R., Sun, H., Chen, W.: A finite deformation fractional viscoplastic model for the glass transition behavior of amorphous polymers. Int. J. Non-Linear Mech. 93, 7–14 (2017).  https://doi.org/10.1016/j.ijnonlinmec.2017.04.019 CrossRefGoogle Scholar
  35. Yin, Z.-Y., Chang, C.S., Karstunen, M., Hicher, P.-Y.: An anisotropic elastic–viscoplastic model for soft clays. Int. J. Solids Struct. 47(5), 665–677 (2010).  https://doi.org/10.1016/j.ijsolstr.2009.11.004 CrossRefzbMATHGoogle Scholar
  36. Yin, D., Duan, X., Zhou, X., Li, Y.: Time-based fractional longitudinal–transverse strain model for viscoelastic solids. Mech. Time-Depend. Mater. 18(1), 329–337 (2013) CrossRefGoogle Scholar
  37. Yu, F.: Particle breakage and the critical state of sands. Geotechnique 67(8), 713–719 (2017).  https://doi.org/10.1680/jgeot.15.P.250 CrossRefGoogle Scholar
  38. Zhou, H.W., Wang, C.P., Jr, L.M., Duan, Z.Q., Ding, J.Y.: A fractional derivative approach to full creep regions in salt rock. Mech. Time-Depend. Mater. 17(3), 413–425 (2013) CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Key Laboratory of Ministry of Education for Geomechanics and Embankment EngineeringHohai UniversityNanjingChina
  2. 2.School of Civil Engineering and ArchitectureWuhan University of TechnologyWuhanChina

Personalised recommendations