Advertisement

Optimal discrete-time Prony series fitting method for viscoelastic materials

  • Eva Barrientos
  • Fernández Pelayo
  • Álvaro Noriega
  • María Jesús Lamela
  • Alfonso Fernández-Canteli
  • Eiji Tanaka
Article
  • 133 Downloads

Abstract

Viscoelastic models based on Prony series are usually used due to easy implementation in finite element analysis codes. The experimental data are fitted to a Prony series using a user-chosen number of terms represented by two coefficients. The time coefficients \(\tau _{i}\) are previously fixed in the time scale to determine the second parameter of the model. Usually, a homogeneous distribution in the logarithmic-time scale is used for \(\tau _{i}\). When short-time curves must be fitted or the relaxation curve shape is not uniformly distributed in time, the homogeneous distribution of time coefficients could be a significant drawback, since a large number of coefficients might be needed or even a reasonable fitting is not possible.

In this study, an optimized \(\tau _{i}\) distribution method for fitting master curves of viscoelastic materials based on Prony series model is proposed. The method is based on an optimization algorithm strategy to allocate the time coefficients along the time scale to obtain the best fit. The method is validated by using experimental data of temporomandibular joint disc, which presents a short-time and high relaxation rate viscoelastic curve. The method improves significantly the fitting of the viscoelastic curves when compared with uniformly distributed time fittings.

Furthermore, the optimized coefficients are also used to obtain the complex moduli of the material using an analytical conversion, which are then compared with the experimental complex moduli curves of the material.

Keywords

Viscoelastic Prony series Optimization Relaxation Soft materials Viscoelastic behaviour 

Notes

Acknowledgements

This research was supported in part by Grants-in-Aid 26293436 (E.T.) for Science Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The funder had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors would like to acknowledge the support of the CajAstur Fellowship-University of Oviedo 2011 program.

References

  1. ANSYS: ANSYS Mechanical User’s Guide. ANSYS, Canonsburg (2013) Google Scholar
  2. Barrientos, E., Pelayo, F., Tanaka, E., Lamela-Rey, M.J., Fernández-Canteli, A.: Dynamic and stress relaxation properties of the whole porcine temporomandibular joint disc under compression. J. Mech. Behav. Biomed. Mater. 57, 109–115 (2016).  https://doi.org/10.1016/j.jmbbm.2015.12.003 CrossRefGoogle Scholar
  3. Bradshaw, R.D., Brinson, L.C.: A sign control method for fitting and interconverting material functions for linearly viscoelastic solids. Mech. Time-Depend. Mater. 1, 85–108 (1997).  https://doi.org/10.1023/A:1009772018066 CrossRefGoogle Scholar
  4. Broyden, C.G.: The convergence of a class of double-rank minimization algorithms 1. General considerations. IMA J. Appl. Math. 6, 76–90 (1970).  https://doi.org/10.1093/imamat/6.1.76 CrossRefzbMATHGoogle Scholar
  5. Byrd, R.H., Gilbert, J.C., Nocedal, J.: A trust region method based on interior point techniques for nonlinear programming. Math. Program. 89, 149–185 (2000).  https://doi.org/10.1007/PL00011391 MathSciNetCrossRefzbMATHGoogle Scholar
  6. Christensen, R.M.: Theory of Viscoelasticity, 2nd edn. Dover, Mineola (2003) Google Scholar
  7. Cost, T.L., Becker, E.B.: A multidata method of approximate Laplace transform inversion. Int. J. Numer. Methods Eng. 2, 207–219 (1970).  https://doi.org/10.1002/nme.1620020206 CrossRefzbMATHGoogle Scholar
  8. Emri, I., Tschoegl, N.W.: Generating line spectra from experimental responses. Part I: relaxation modulus and creep compliance. Rheol. Acta 32, 311–322 (1993).  https://doi.org/10.1007/BF00434195 CrossRefGoogle Scholar
  9. Emri, I., Von Bernstorff, B.S., Cvelbar, R., Nikonov, A.: Re-examination of the approximate methods for interconversion between frequency-and time-dependent material functions. J. Non-Newton. Fluid Mech. 129, 75–84 (2005) CrossRefzbMATHGoogle Scholar
  10. Fernández, P., Rodríguez, D., Lamela, M.J., Fernández-Canteli, A.: Study of the interconversion between viscoelastic behaviour functions of PMMA. Mech. Time-Depend. Mater. 15, 169–180 (2010).  https://doi.org/10.1007/s11043-010-9128-3 CrossRefGoogle Scholar
  11. Fernández, P., Lamela, M.J., Ramos, A., Fernández-Canteli, A., Tanaka, E.: The region-dependent dynamic properties of porcine temporomandibular joint disc under unconfined compression. J. Biomech. 46, 845–848 (2013).  https://doi.org/10.1016/j.jbiomech.2012.11.035 CrossRefGoogle Scholar
  12. Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1980) Google Scholar
  13. Findley, W.N., Lai, J.X., Onaran, K.: Creep and Relaxation of Nonlinear Viscoelastic Materials. Dover, New York (1976) zbMATHGoogle Scholar
  14. Fletcher, R.: A new approach to variable metric algorithms. Comput. J. 13, 317–322 (1970).  https://doi.org/10.1093/comjnl/13.3.317 CrossRefzbMATHGoogle Scholar
  15. García-Barruetabeña, J., Cortés, F., Abete, J.M., Fernández, P., Lamela, M.J., Fernández-Canteli, A.: Relaxation modulus–complex modulus interconversion for linear viscoelastic materials. Mech. Time-Depend. Mater. 17, 465–479 (2013).  https://doi.org/10.1007/s11043-012-9197-6 CrossRefGoogle Scholar
  16. Goldfarb, D.: A family of variable-metric methods derived by variational means. Math. Comput. 24, 23–26 (1970).  https://doi.org/10.1090/S0025-5718-1970-0258249-6 MathSciNetCrossRefzbMATHGoogle Scholar
  17. Herdy, M.: Introductory Theory Manual ViscoData & ViscoShift (2003) Google Scholar
  18. Lakes, R.S.: Viscoelastic Solids. CRC Press, Boca Raton (1998) zbMATHGoogle Scholar
  19. Lakes, R.S.: Viscoelastic Materials. Cambridge University Press, Cambridge (2009) CrossRefzbMATHGoogle Scholar
  20. Lamela, M.J., Prado, Y., Fernández, P., Fernández-Canteli, A., Tanaka, E.: Non-linear viscoelastic model for behaviour characterization of temporomandibular joint discs. Exp. Mech. 51, 1435–1440 (2011).  https://doi.org/10.1007/s11340-011-9465-4 CrossRefGoogle Scholar
  21. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010) CrossRefzbMATHGoogle Scholar
  22. MathWorks:. MATLAB documentation (R2016b). https://es.mathworks.com/help/matlab/
  23. Park, S.W., Kim, Y.R.: Fitting Prony-series viscoelastic models with power-law presmoothing. J. Mater. Civ. Eng. 13, 26–32 (2001).  https://doi.org/10.1061/(ASCE)0899-1561(2001)13:1(26) CrossRefGoogle Scholar
  24. Park, S.W., Schapery, R.A.: Methods of interconversion between linear viscoelastic material functions. Part I—a numerical method based on Prony series. Int. J. Solids Struct. 36, 1653–1675 (1999).  https://doi.org/10.1016/S0020-7683(98)00055-9 CrossRefzbMATHGoogle Scholar
  25. Pioletti, D.P., Rakotomanana, L.R., Benvenuti, J.-F., Leyvraz, P.-F.: Viscoelastic constitutive law in large deformations. J. Biomech. 31, 753–757 (1998).  https://doi.org/10.1016/S0021-9290(98)00077-3 CrossRefGoogle Scholar
  26. Provenzano, P., Lakes, R., Keenan, T., Vanderby, R.: Nonlinear ligament viscoelasticity. Ann. Biomed. Eng. 29, 908–914 (2001).  https://doi.org/10.1114/1.1408926 CrossRefGoogle Scholar
  27. Ramkumar, D.H.S., Caruthers, J.M., Mavridis, H., Shroff, R.: Computation of the linear viscoelastic relaxation spectrum from experimental data. J. Appl. Polym. Sci. 64, 2177–2189 (1997).  https://doi.org/10.1002/(SICI)1097-4628(19970613)64:11<2177::AID-APP14>3.0.CO;2-1 CrossRefGoogle Scholar
  28. Schapery, R.A.: Approximate methods of transform inversion for viscoelastic stress analysis. In: Proceedings Fourth US National Congress of Applied Mechanics, pp. 1075–1085 (1962a) Google Scholar
  29. Schapery, R.A.: A Simple Collocation Method for Fitting Viscoelastic Models to Experimental Data (1962b) Google Scholar
  30. Schapery, R.A., Park, S.W.: Methods of interconversion between linear viscoelastic material functions. Part II—an approximate analytical method. Int. J. Solids Struct. 36, 1677–1699 (1999).  https://doi.org/10.1016/S0020-7683(98)00060-2 CrossRefzbMATHGoogle Scholar
  31. Shanno, D.F.: Conditioning of quasi-Newton methods for function minimization. Math. Comput. 24, 647–656 (1970).  https://doi.org/10.1090/S0025-5718-1970-0274029-X MathSciNetCrossRefzbMATHGoogle Scholar
  32. SIMULIA: In: ABAQUS Analysis User’s Manual. SIMULIA Dassault Systemes, Rhode Island (2007) Google Scholar
  33. TA Instruments: RSA3 User Manual. TA Instruments, New Castle (2001) Google Scholar
  34. Tanaka, E., Pelayo, F., Kim, N., Lamela, M.J., Kawai, N., Fernández-Canteli, A.: Stress relaxation behaviors of articular cartilages in porcine temporomandibular joint. J. Biomech. 47, 1582–1587 (2014).  https://doi.org/10.1016/j.jbiomech.2014.03.007 CrossRefGoogle Scholar
  35. Tobolsky, A.V.: Properties and Structure of Polymers. Wiley, New York (1960) Google Scholar
  36. Tobolsky, A.V., Murakami, K.: Existence of a sharply defined maximum relaxation time for monodisperse polystyrene. J. Polym. Sci. 40, 443–456 (1959).  https://doi.org/10.1002/pol.1959.1204013714 CrossRefGoogle Scholar
  37. Tschoegl, N.W.: The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction. Springer, Berlin (2012) zbMATHGoogle Scholar
  38. Tschoegl, N.W., Emri, I.: Generating line spectra from experimental responses. Part II: storage and loss functions. Rheol. Acta 32, 322–327 (1993).  https://doi.org/10.1007/BF00434196 CrossRefGoogle Scholar
  39. Tzikang, C.: Determining a prony series for a viscoelastic material from time varying strain data. NASA Langley Technical Report Server (2000) Google Scholar
  40. Waltz, R.A., Morales, J.L., Nocedal, J., Orban, D.: An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math. Program. 107, 391–408 (2006).  https://doi.org/10.1007/s10107-004-0560-5 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Construction and Manufacturing EngineeringUniversity of OviedoOviedoSpain
  2. 2.Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan

Personalised recommendations