Advertisement

Time-dependent lateral pressure of the filling barricade for roadway cemented backfill mining technology

  • Xuejie Deng
  • Jixiong Zhang
  • Bern Klein
  • Benjamin de Wit
  • Junwen Zhang
Article
  • 10 Downloads

Abstract

The filling barricade is one of the key components of roadway cemented backfill systems and this research focuses on critical factors influencing the performance of these systems, particularly the lateral stress characteristics and the stability of the filling barricade. In this paper, a theoretical model is presented and applied to obtain and calculate the lateral pressures exerted on the filling barricade and to understand the effects of the filling process. It is found that the yield stress of cemented backfill increases with curing time and this relationship can be described as an increasing power function. The lateral stresses exerted on the filling barricade increase over time during the filling period but decrease over time during the waiting period. Both the maximum lateral stress exerted on the filling barricade and the decreasing amplitude decrease as the number of filling rounds increases. In the calculation case, the maximum lateral stress declines from 0.161 MPa to 0.0148 MPa when the number of filling rounds increases from one to six. From these results, the filling process with three rounds is determined to be the optimal process scheme. In the first round, the lateral stress increases to 0.0369 MPa during the filling period and decreases to 0.0146 MPa during the waiting period; In the second round, the lateral stress increases to 0.0368 MPa then decreases to 0 MPa; in the third round, the lateral stress of the filling barricade stays at 0 MPa.

Keywords

Time-dependent lateral pressure Filling barricade Roadway cemented backfill Rheological behavior 

Notes

Acknowledgements

The authors would like to thank The University of British Columbia and those researchers who have made great contributions to the project. Special thanks go to the Mt. Polley mine for providing the tailings used in this research.

Funding

This work was supported by National Key R&D Program of China [Grant Number 2018YFC0604704], National Natural Science Foundation of China (Youth Program) [Grant Number 51804308], the Research Fund of The State Key Laboratory of Coal Resources and Safe Mining, CUMT [Grant Number SKLCRSM18KF022, SKLCRSM18KF021] and the Fundamental Funds for the Central Universities [Grant Number 2018QZ07].

Declaration of conflicting interests

No potential conflict of interest was reported by the authors.

References

  1. Amziane, S., Andriamanantsilavo, N.: Prediction of cement paste pore water pressure variations during setting period. Adv. Cem. Res. 16(1), 23–28 (2004).  https://doi.org/10.1680/adcr.2004.16.1.23 CrossRefGoogle Scholar
  2. Arinaitwe, E., Hou, Y., Tong, L., Klein, B.: Coarse size pre-concentration of low grade copper ores by dense medium separation. In: Conference of Metallurgists, Canadian Institute of Mining, Metallurgy and Petroleum, Vancouver, BC, Canada, 2014 Google Scholar
  3. Assaad, J., Khayat, K.H., Mesbah, H.: Assessment of thixotropy of flowable and self-consolidating concrete. ACI Mater. J. 100(2), 99–107 (2003a) Google Scholar
  4. Assaad, J., Khayat, K.H., Mesbah, H.: Variation of formwork pressure with thixotropy of self-consolidating concrete. ACI Mater. J. 100(1), 29–37 (2003b) Google Scholar
  5. Barnes, H.A.: A Handbook of Elementary Rheology. Institute of Non-Newtonian Fluid Mechanics, University of Wales, Aberystwyth (2000) Google Scholar
  6. Bekkour, K., Leyama, M., Benchabane, A., Scrivener, O.: Time-dependent rheological behavior of bentonite suspensions: an experimental study. J. Rheol. 49(6), 1329–1345 (2005).  https://doi.org/10.1122/1.2079267 CrossRefGoogle Scholar
  7. Cihangir, F., Ercikdi, B., Kesimal, A., Turan, A., Deveci, H.: Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: effect of binder type and dosage. Miner. Eng. 30, 33–43 (2012).  https://doi.org/10.1016/j.mineng.2012.01.009 CrossRefGoogle Scholar
  8. Cui, L., Fall, M.: Modeling of pressure on retaining structures for underground fill mass. Tunn. Undergr. Space Technol. 69, 94–107 (2017).  https://doi.org/10.1016/j.tust.2017.06.010 CrossRefGoogle Scholar
  9. Cui, L., Fall, M.: Modeling of self-desiccation in a cemented backfill structure. Int. J. Numer. Anal. Methods Geomech. 42(3), 558–583 (2018).  https://doi.org/10.1002/nag.2756 CrossRefGoogle Scholar
  10. Deng, X., Zhang, J., Kang, T., Han, X.: Strata behavior in extra-thick coal seam mining with upward slicing backfilling technology. Int. J. Min. Sci. Technol. 26(4), 587–592 (2016).  https://doi.org/10.1016/j.ijmst.2016.05.009 CrossRefGoogle Scholar
  11. Deng, X.J., Zhang, J.X., Zhou, N., de Wit, B., Wang, C.T.: Upward slicing longwall-roadway cemented backfilling technology for mining an extra-thick coal seam located under aquifers: a case study. Environ. Earth Sci. 76(23), 715–781 (2017).  https://doi.org/10.1007/s12665-017-7120-9. 789 CrossRefGoogle Scholar
  12. Deng, X., Klein, B., Tong, L., de Wit, B.: Experimental study on the rheological behavior of ultra-fine cemented backfill. Constr. Build. Mater. 158(1), 985–994 (2018a).  https://doi.org/10.1016/j.conbuildmat.2017.05.085 CrossRefGoogle Scholar
  13. Deng, X.J., Klein, B., Hallbom, D.J., de Wit, B., Zhang, J.X.: Influence of particle size on the basic and time-dependent rheological behaviors of cemented paste backfill. J. Mater. Eng. Perform. 27(7), 3478–3487 (2018b).  https://doi.org/10.1007/s11665-018-3467-7 CrossRefGoogle Scholar
  14. Deng, X.J., Klein, B., Zhang, J.X., Hallbom, D., de Wit, B.: Time-dependent rheological behaviour of cemented backfill mixture. Int. J. Surf. Min. Reclam. Environ. 32(3), 145–162 (2018c).  https://doi.org/10.1080/17480930.2016.1239305 CrossRefGoogle Scholar
  15. Doherty, J.P., Hasan, A., Suazo, G.H., Fourie, A.: Investigation of some controllable factors that impact the stress state in cemented paste backfill. Can. Geotech. J. 52(12), 1901–1912 (2015).  https://doi.org/10.1139/cgj-2014-0321 CrossRefGoogle Scholar
  16. Festugato, L., Fourie, A., Consoli, N.C.: Cyclic shear response of fibre-reinforced cemented paste backfill. Geotech. Lett. 3(1), 5–12 (2013).  https://doi.org/10.1680/geolett.12.00042 CrossRefGoogle Scholar
  17. Feys, D., Verhoeven, R., Schutter, G.D.: Evaluation of time independent rheological models applicable to fresh self-compacting concrete. Appl. Rheol. 17(5), 56244 (2007) Google Scholar
  18. Hallbom, D.J.: Pipe Flow of Homogeneous Slurry. The University of British Columbia, Vancouver (2008) Google Scholar
  19. Hallbom, D., Klein, B.: A physical model for yield plastic fluids. Part. Sci. Technol. 27(1), 1–15 (2009).  https://doi.org/10.1080/02726350802611275 CrossRefGoogle Scholar
  20. Hanehara, S., Yamada, K.: Rheology and early age properties of cement systems. Cem. Concr. Res. 38(2), 175–195 (2008).  https://doi.org/10.1016/j.cemconres.2007.09.006 CrossRefGoogle Scholar
  21. Iskander, M., Chen, Z., Omidvar, M., Guzman, I.: Rankine pseudo-static earth pressure for c–\(\phi \) soils. Mech. Res. Commun. 51, 51–55 (2013).  https://doi.org/10.1016/j.mechrescom.2013.04.010 CrossRefGoogle Scholar
  22. Khalili Garakani, A.H., Mostoufi, N., Sadeghi, F., Hosseinzadeh, M., Fatourechi, H., Sarrafzadeh, M.H., Mehrnia, M.R.: Comparison between different models for rheological characterization of activated sludge. Iran. J. Environ. Health Sci. Eng. 8(3), 255–264 (2011) Google Scholar
  23. Khayat, K.H., Assaad, J.J.: Effect of w/cm and high-range water-reducing admixture on formwork pressure and thixotropy of self-consolidating concrete. ACI Mater. J. 103(3), 186–193 (2006) Google Scholar
  24. Klein, B., Hallbom, D.: Rheology in mineral processing. In: Deepak, M., Patrick, T., Erik, S. (eds.) Recent Advances in Mineral Processing Plant Design, Littleton, CO, USA, pp. 406–418. Society for Mining Metallurgy and Exploration, Littleton (2009) Google Scholar
  25. Klein, B., Laskowski, J.S.: Rheological measurements on settling suspensions: characterization of a cyanide Leach pulp. Miner. Process. Extr. Metall. Rev. 20(1), 41–55 (2000).  https://doi.org/10.1080/08827509908962462 CrossRefGoogle Scholar
  26. Klein, B., Laskowski, J.S., Partridge, S.J.: A new viscometer for rheological measurements on settling suspensions. J. Rheol. 39(5), 827–840 (1995).  https://doi.org/10.1122/1.550620 CrossRefGoogle Scholar
  27. Kwon, S.H., Shah, S.P., Phung, Q.T., Hong Kim, J., Lee, Y.: Intrinsic model to predict formwork pressure. ACI Mater. J. 107(1), 20–26 (2010) Google Scholar
  28. Kwon, S.H., Phung, Q.T., Park, H.Y., Kim, J.H., Shah, S.P.: Effect of wall friction on variation of formwork pressure over time in self-consolidating concrete. Cem. Concr. Res. 41(1), 90–101 (2011).  https://doi.org/10.1016/j.cemconres.2010.09.009 CrossRefGoogle Scholar
  29. Lecompte, T., Perrot, A., Picandet, V., Bellegou, H., Amziane, S.: Cement-based mixes: shearing properties and pore pressure. Cem. Concr. Res. 42(1), 139–147 (2012).  https://doi.org/10.1016/j.cemconres.2011.09.007 CrossRefGoogle Scholar
  30. Mercier, S., Molinari, A.: Homogenization of elastic–viscoplastic heterogeneous materials: self-consistent and Mori–Tanaka schemes. Int. J. Plast. 25(6), 1024–1048 (2009).  https://doi.org/10.1016/j.ijplas.2008.08.006 CrossRefzbMATHGoogle Scholar
  31. Ovarlez, G., Roussel, N.: A physical model for the prediction of lateral stress exerted by self-compacting concrete on formwork. Mater. Struct. 39(2), 269–279 (2006).  https://doi.org/10.1617/s11527-005-9052-1 CrossRefGoogle Scholar
  32. Saak, A.W., Jennings, H.M. Shah, S.P. : The influence of wall slip on yield stress and viscoelastic measurements of cement paste. Cem. Concr. Res. 31(2), 205–212 (2001) CrossRefGoogle Scholar
  33. Sant, G., Ferraris, C.F., Weiss, J.: Rheological properties of cement pastes: a discussion of structure formation and mechanical property development. Cem. Concr. Res. 38(11), 1286–1296 (2008).  https://doi.org/10.1016/j.cemconres.2008.06.008 CrossRefGoogle Scholar
  34. Suazo, G., Villavicencio, G.: Numerical simulation of the blast response of cemented paste backfilled stopes. Comput. Geotech. 100, 1–14 (2018).  https://doi.org/10.1016/j.compgeo.2018.04.007 CrossRefGoogle Scholar
  35. Sun, Q., Zhang, J., Zhou, N., Qi, W.: Roadway backfill coal mining to preserve surface water in western China. Mine Water Environ. 37(2), 366–375 (2017).  https://doi.org/10.1007/s10230-017-0466-0 CrossRefGoogle Scholar
  36. Thompson, B.D., Bawden, W.F., Grabinsky, M.W.: In situ measurements of cemented paste backfill at the Cayeli mine. Can. Geotech. J. 49(7), 755–772 (2012).  https://doi.org/10.1139/t2012-040 CrossRefGoogle Scholar
  37. Wallevik, J.E.: Rheological properties of cement paste: thixotropic behavior and structural breakdown. Cem. Concr. Res. 39(1), 14–29 (2009).  https://doi.org/10.1016/j.cemconres.2008.10.001 CrossRefGoogle Scholar
  38. Wu, A., Wang, Y., Wang, H., Yin, S., Miao, X.: Coupled effects of cement type and water quality on the properties of cemented paste backfill. Int. J. Miner. Process. 143(10), 65–71 (2015).  https://doi.org/10.1016/j.minpro.2015.09.004 CrossRefGoogle Scholar
  39. Xue, Y.: High large-scale mining stope retaining wall of all tailings filling reliability of the mechanical analysis. J. Jiangxi Univ. Sci. Technol. 29(5), 18–22 (2008) Google Scholar
  40. Yang, P., Li, L., Aubertin, M., Brochu-Baekelmans, M., Ouellet, S.: Stability analyses of waste rock barricades designed to retain paste backfill. Int. J. Geomech. 17(3), 04016079 (2017).  https://doi.org/10.1061/(ASCE)GM.1943-5622.0000740 CrossRefGoogle Scholar
  41. Yi, P.: Analysis on mechanical property of retaining wall in tailing filling test area of Xianglushan tungsten mine. Nonferr. Met. Eng. Res. 35(3), 1–4 (2014) Google Scholar
  42. Yilmaz, E., Belem, T., Bussière, B., Mbonimpa, M., Benzaazoua, M.: Curing time effect on consolidation behaviour of cemented paste backfill containing different cement types and contents. Constr. Build. Mater. 75, 99–111 (2015).  https://doi.org/10.1016/j.conbuildmat.2014.11.008 CrossRefGoogle Scholar
  43. Yilmaz, T., Ercikdi, B., Deveci, H.: Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings. J. Environ. Manag. 222, 250–259 (2018).  https://doi.org/10.1016/j.jenvman.2018.05.075 CrossRefGoogle Scholar
  44. Zhang, Y.: Study on the buffering cushion installed in retaining wall model test with expansive soil as backfill. Chin. J. Geotechn. Eng. 17(1), 38–45 (1995) Google Scholar
  45. Zhang, B., Cao, Z., Zhao, Y., Yang, T., Zhao, K., Wu, L., Shao, H., Zeng, P.: Bulkhead stress analysis in filling cemented tailings and its practical application. Nonferr. Met. Sci. Eng. 2(5), 57–60 (2011).  https://doi.org/10.13264/j.cnki.ysjskx.2011.05.005 Google Scholar
  46. Zhu, L., Sun, N., Papadopoulos, K., De Kee, D.: A slotted plate device for measuring static yield stress. J. Rheol. 45(5), 1105–1122 (2001).  https://doi.org/10.1122/1.1392299 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Xuejie Deng
    • 1
    • 2
  • Jixiong Zhang
    • 2
  • Bern Klein
    • 3
  • Benjamin de Wit
    • 3
  • Junwen Zhang
    • 1
    • 2
  1. 1.College of Resources and Safety EngineeringChina University of Mining and TechnologyBeijingChina
  2. 2.State Key Laboratory of Coal Resources and Safe MiningChina University of Mining and TechnologyXuzhouChina
  3. 3.Norman B. Keevil Institute of Mining EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations