Advertisement

Influence of hydrated lime on linear viscoelastic properties of bituminous mastics

  • Cong Viet Phan
  • Hervé Di BenedettoEmail author
  • Cédric Sauzéat
  • Didier Lesueur
  • Simon Pouget
Article
  • 21 Downloads

Abstract

The influence of hydrated lime (HL) on linear viscoelastic (LVE) behavior of mastic is investigated. One bitumen and five mastics with different HL content are investigated. The same 35/50 penetration grade bitumen was tested and used for mastics preparation. The LVE properties were obtained by means of complex shear modulus tests using a dynamic shear rheometer (DSR) on a wide range of temperatures and frequencies.

The time–temperature superposition principle in the LVE domain was applicable. Experimental results were modeled using the 2S2P1D model previously developed at the University of Lyon/ENTPE. The reinforcement effect of HL on LVE behavior of mastics was observed and quantified. Results show that the volume of filler increase when limestone is replaced by HL at constant mass, may explain a large part of the observed stiffening effect.

Keywords

Linear viscoelastic behavior Hydrated lime Mastic Bitumen Complex shear modulus Rheological modeling 

References

  1. Anderson, D.A., Goetz, W.H.: Mechanical behavior and reinforcement of mineral filler-asphalt mixtures. J. Assoc. Asph. Paving Technol. 42, 37–66 (1973) Google Scholar
  2. Delaporte, B., Di Benedetto, H., Chaverot, P., Gauthier, G.: Linear viscoelastic properties of bituminous materials: from binders to mastics (with discussion). J. Assoc. Asph. Paving Technol. 76, 445–494 (2007) Google Scholar
  3. Delaporte, B., Di Benedetto, H., Chaverot, P., Gauthier, G.: Effect of ultrafine particles on linear viscoelastic properties of mastics and asphalt concretes. Transp. Res. Rec. 2051, 41–48 (2008) CrossRefGoogle Scholar
  4. Delaporte, B., Di Benedetto, H., Chaverot, P., Gauthier, G.: Linear viscoelastic properties of bituminous materials including new products made with ultrafine particles. Road Mater, Pavement Des. 10(1), 7–38 (2009) CrossRefGoogle Scholar
  5. Di Benedetto, H., Delaporte, B., Sauzeat, C.: Three dimensional linear behavior of bituminous materials: experiments and modeling. Int. J. Geomech. 7, 149–15 (2007) CrossRefGoogle Scholar
  6. Di Benedetto, H., Olard, F., Sauzéat, C., Delaporte, B.: Linear viscoelastic behavior of bituminous materials: from binders to mixes. Road Mater, Pavement Des. 5(SI), 163–202 (2004) CrossRefGoogle Scholar
  7. Di Benedetto, H., Sauzéat, C., Clec’h, P.: Anisotropy of bituminous mixture in the linear viscoelastic domain. Mech. Time-Depend. Mater. 20(3), 281–297 (2016) CrossRefGoogle Scholar
  8. Durand, A., Morel, J., Sutton, O., Muller, G.: Investigations on bitumen/polymer/filler interactions and rheological properties of mastics. In: Proc., RILEM 1997, Mechanical Tests for Bituminous Materials, pp. 173–178 (1997) Google Scholar
  9. Gayte, P., Di Benedetto, H., Sauzéat, C., Nguyen, Q.T.: Influence of transient effects for analysis of complex modulus tests on bituminous mixtures. Road Mater, Pavement Des. 17(2), 271–289 (2016) CrossRefGoogle Scholar
  10. Jiang, J., Ni, F., Yao, L., Cui, X.: Evaluating the mastic distribution of asphalt mixtures based on a new thickness threshold using 2D image planers. Road Mater. Pavement Des. 19, 1422–1435 (2018).  https://doi.org/10.1080/14680629.2017.1323001 CrossRefGoogle Scholar
  11. Johansson, L.S., Isacsson, U.: Effect of filler on low temperature physical hardening of bitumen. Constr. Build. Mater. 12, 463–470 (1998) CrossRefGoogle Scholar
  12. Kim, Y.R., Little, D.N.: Linear viscoelastic analysis of asphalt mastics. J. Mater. Civ. Eng. 16(2) (2004).  https://doi.org/10.1061/(ASCE)0899-1561(2004)16:2(122)
  13. Kim, Y.R., Little, D.N., Song, I.: Effect of mineral fillers on fatigue resistance and fundamental characteristics. Transp. Res. Rec. 183, 1–8 (2003) CrossRefGoogle Scholar
  14. Kuity, A., Das, A.: Effect of filler gradation on creep response of asphalt mix. Road Mater, Pavement Des. 18(4), 913–928 (2016) CrossRefGoogle Scholar
  15. Lackner, R., Spiegl, M., Blab, R., Eberhardsteiner, J.: Is low-temperature creep of asphalt mastic independent of filler shape and mineralogy? Arguments from multiscale analysis. J. Mater. Civ. Eng. 17(5), 485–491 (2005).  https://doi.org/10.1061/(ASCE)0899-1561(2005)17:5(485) CrossRefGoogle Scholar
  16. Lesueur, D., Little, D.N.: Effect of hydrated lime on rheology, fracture, and aging of bitumen. Transp. Res. Rec. 1681, 93–105 (1999) CrossRefGoogle Scholar
  17. Lesueur, D., Petit, J., Ritter, H.J.: The mechanisms of hydrated lime modification of asphalt mixtures: a state-of-the-art review. Road Mater, Pavement Des. 14(1), 1–16 (2013) CrossRefGoogle Scholar
  18. Lesueur, D., Blazquez, M.L., Garcia, D.A., Rubio, A.R.: On the impact of the filler on the complex modulus of asphalt mixtures. Road Mater. Pavement Des. 19, 1057–1071 (2018).  https://doi.org/10.1080/14680629.2017.1288653 CrossRefGoogle Scholar
  19. Liao, M.C., Chen, J.S.: Zero shear viscosity of bitumen-filler mastics. J. Mater. Civ. Eng. 23(12) (2011).  https://doi.org/10.1061/(ASCE)MT.19435533.000033
  20. Mangiafico, S., Di Benedetto, H., Sauzéat, C., Olard, F., Pouget, S., Planque, L.: Influence of reclaimed asphalt pavement content on complex modulus of asphalt binder blends and corresponding mixes: experimental results and modelling. Road Mater, Pavement Des. 14(1), 132–148 (2013) CrossRefGoogle Scholar
  21. Mangiafico, S., Di Benedetto, H., Sauzéat, C., Olard, F., Pouget, S., Planque, L.: New method to obtain viscoelastic properties of bitumen blends from pure and reclaimed asphalt pavement binder constituents. Road Mater, Pavement Des. 15(2), 312–329 (2014) CrossRefGoogle Scholar
  22. Mannan, U.A., Islam, M., Weldegiorgis, M., Tarefder, R.: Experimental investigation on rheological properties of recycled asphalt pavement mastics. Appl. Rheol. 25, 22753 (2015) Google Scholar
  23. Olard, F., Di Benedetto, H.: General ‘2S2P1D’ model and relation between the linear viscoelastic behaviors of bituminous binders and mixes. Road Mater, Pavement Des. 4(2), 185–224 (2003) Google Scholar
  24. Palade, L.I., Attané, P., Camaro, S.: Linear viscoelastic behavior of asphalt and asphalt based mastic. Rheol. Acta 39(2), 180–190 (2000) CrossRefGoogle Scholar
  25. Perraton, D., Di Benedetto, H., Sauzéat, C., Hofko, B., Graziani, A., Nguyen, Q.T., Pouget, S., Poulikakos, L.D., Tapsoba, N., Grenfell, J.: 3Dim experimental investigation of linear viscoelastic properties of bituminous mixtures. Mater. Struct. 49(11), 4813–4829 (2016) CrossRefGoogle Scholar
  26. Pham, N.H., Sauzéat, C., Di Benedetto, H., Gonzalez-Leon, J.A., Barreto, G., Nicolaï, A., Jakubowski, M.: Analysis and modeling of 3D complex modulus tests on hot and warm bituminous mixtures. Mech. Time-Depend. Mater. 19(2), 167–186 (2015) CrossRefGoogle Scholar
  27. Phan, C.V., Di Benedetto, H., Sauzéat, C., Lesueur, D.: Influence of hydrated lime on linear viscoelastic properties of mastics. In: Proc., 6th Eurasphalt & Eurobitume Congress, Paper 211. Eurobitum and European Asphalt Pavement Association (EAPA), Prague (2016) Google Scholar
  28. Phan, C.V., Di Benedetto, H., Sauzéat, C., Lesueur, D., Pouget, S., Olard, F., Dupriet, S.: Complex modulus and fatigue resistance of bituminous mixtures containing hydrated lime. Constr. Build. Mater. 139, 24–33 (2017) CrossRefGoogle Scholar
  29. Pouget, S., Sauzéat, C., Di Benedetto, H., Olard, F.: From the behavior of constituent materials to the calculation and design of orthotropic bridge structures. Road Mater, Pavement Des. 11(SI), 111–144 (2010) CrossRefGoogle Scholar
  30. Pouget, S., Sauzéat, C., Di Benedetto, H., Olard, F.: Modeling of viscous bituminous wearing course materials on orthotropic steel deck. Mater. Struct. 45(7), 1115–1125 (2012) CrossRefGoogle Scholar
  31. Riccardi, C., Cannone Falchetto, A., Losa, M., Wistuba, M.P.: Development of simple relationship between asphalt binder and mastic based on rheological tests. Road Mater. Pavement Des. 19, 18–35 (2018).  https://doi.org/10.1080/14680629.2016.1230514 CrossRefGoogle Scholar
  32. Rieksts, K., Pettinari, M., Haritonovs, V.: The influence of filler type and gradation on the rheological performance of mastics. Road Mater, Pavement Des. (2018).  https://doi.org/10.1080/14680629.2018.1428216 Google Scholar
  33. Roberto, A., Romeo, E., Montepara, A., Roncella, R.: Effect of fillers and their fractional voids on fundamental fracture properties of asphalt mixtures and mastics. Road Mater, Pavement Des. (2018).  https://doi.org/10.1080/14680629.2018.1475297 Google Scholar
  34. Santagata, E., Baglieri, O., Tsantilis, L., Dalmazzo, D., Chiappinelli, G.: Fatigue and healing properties of bituminous mastics reinforced with nano-sized additives. Mech. Time-Depend. Mater. 20(3), 367–387 (2016) CrossRefGoogle Scholar
  35. Shashidhar, N., Romero, P.: Factors affecting the stiffening potential of mineral fillers. Transp. Res. Rec. 1638, 94–100 (1998) CrossRefGoogle Scholar
  36. Tapsoba, N., Sauzéat, C., Di Benedetto, H., Baaj, H., Ech, M.: Behaviour of asphalt mixtures containing reclaimed asphalt pavement and asphalt shingle. Road Mater, Pavement Des. 15(2), 330–347 (2014) CrossRefGoogle Scholar
  37. Tunnicliff, D.G.: Binding effect of mineral filler. Proc. Assoc. Asph. Paving Technol. 36, 114–154 (1967) Google Scholar
  38. Van Rompu, J., Di Benedetto, H., Buannic, M., Ruot, C.: New fatigue test on bituminous binders: experimental results and modeling. Constr. Build. Mater. 37, 197–208 (2012) CrossRefGoogle Scholar
  39. Wang, D., Wang, L., Gu, X., Zhou, G.: Effect of basalt fiber on the asphalt binder and mastic at low temperature. J. Mater. Civ. Eng. 25(3) (2013).  https://doi.org/10.1061/(ASCE)MT.1943-5533.0000605
  40. Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955) CrossRefGoogle Scholar
  41. Wortelboer, J.P., Hoppen, H.J., Ramond, G., Pastor, M.: Rheological properties of bitumen/filler mixtures. In: Proc., 1st Eurasphalt & Eurobitume Congress, Paper 4.079. Eurobitum and European Asphalt Pavement Association (EAPA), Brussels (1996) Google Scholar
  42. Yusoff, N.I.Md., Mounier, D., Marc-Stephane, G., Hainin, M.R., Airey, G.D., Di Benedetto, H.: Modelling the rheological properties of bituminous binders using the 2S2P1D model. Constr. Build. Mater. 38, 395–406 (2013) CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Univ. LyonENTPE, LTDS (CNRS UMR 5513)Vaulx-en-VelinFrance
  2. 2.LHOIST Southern EuropeSassenageFrance
  3. 3.EIFFAGE Infrastructures, Research & Innovation DepartmentCorbasFrance

Personalised recommendations