On the inference of viscoelastic constants from stress relaxation experiments

  • Kumar VemagantiEmail author
  • Sandeep Madireddy
  • Sayali Kedari


Several constitutive theories have been proposed in the literature to model the viscoelastic response of materials, including widely used rheological constitutive models. These models are characterized by certain parameters (“time constants”) that define the time scales over which the material relaxes. These parameters are primarily obtained from stress relaxation experiments using curve-fitting techniques. However, the question of how best to estimate these time constants remains open.

As a step towards answering this question, we propose an optimal experimental design approach based on ideas from information geometry, namely Fisher information and Kullback–Leibler divergence. The material is modeled as a spring element in parallel with multiple Maxwell elements and described using a one- or two-term Prony series. Treating the time constants as unknowns, we develop expressions for the Fisher information and Kullback–Leibler divergence that allow us to maximize information gain from experimental data. Based on the results of this study, we propose that the largest time constant estimated from a stress relaxation experiment for a linear viscoelastic material should be at most one-fifth of the total time of the experiment in order to maximize information gain. Our results also provide confirmation that the equilibrium modulus of the material cannot be reliably determined from curve-fitting to data from a stress relaxation experiment.


Viscoelastic Time constant Optimal experimental design Fisher information Kullback–Leibler divergence 



We are grateful to the University of Cincinnati Simulation Center for providing financial support for this work.


  1. Andere-Rendon, J., Montgomery, D.C., Rollier, D.A.: Design of mixture experiments using Bayesian D-optimality. J. Qual. Technol. 29(4), 451 (1997) CrossRefGoogle Scholar
  2. Atkinson, A.: DT-optimum designs for model discrimination and parameter estimation. J. Stat. Plan. Inference 138(1), 56–64 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  3. Bonifasi-Lista, C., Lakez, S.P., Small, M.S., Weiss, J.A.: Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading. J. Orthop. Res. 23(1), 67–76 (2005) CrossRefGoogle Scholar
  4. Briody, C., Duignan, B., Jerrams, S., Tiernan, J.: The implementation of a visco-hyperelastic numerical material model for simulating the behaviour of polymer foam materials. Comput. Mater. Sci. 64, 47–51 (2012) CrossRefGoogle Scholar
  5. Burnham, K.P., Anderson, D.R.: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York (2002) zbMATHGoogle Scholar
  6. Chaloner, K., Verdinelli, I.: Bayesian experimental design: a review. Stat. Sci. 10, 273–304 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  7. De Pascalis, R., Abrahams, I.D., Parnell, W.J.: On nonlinear viscoelastic deformations: a reappraisal of Fung’s quasi-linear viscoelastic model. Proc. R. Soc., Math. Phys. Eng. Sci. 470(2166), 20140058 (2014) CrossRefGoogle Scholar
  8. Fedorov, V.V., Hackl, P.: Model-Oriented Design of Experiments, vol. 125. Springer, New York (1997) zbMATHGoogle Scholar
  9. Feroz, F., Hobson, M., Bridges, M.: MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398(4), 1601–1614 (2009) CrossRefGoogle Scholar
  10. Feroz, F., Hobson, M., Cameron, E., Pettitt, A.: Importance nested sampling and the MultiNest algorithm. arXiv:1306.2144 (2013)
  11. Fung, Y.C.: Biomechanics. Springer, New York (1990) CrossRefzbMATHGoogle Scholar
  12. Hingorani, R.V., Provenzano, P.P., Lakes, R.S., Escarcega, A., Vanderby, R.: Nonlinear viscoelasticity in rabbit medial collateral ligament. Ann. Biomed. Eng. 32(2), 306–312 (2004) CrossRefGoogle Scholar
  13. Huan, X., Marzouk, Y.M.: Simulation-based optimal Bayesian experimental design for nonlinear systems. J. Comput. Phys. 232(1), 288–317 (2013) MathSciNetCrossRefGoogle Scholar
  14. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python. (2001)
  15. Knauss, W.G., Zhao, J.: Improved relaxation time coverage in ramp-strain histories. Mech. Time-Depend. Mater. 11(3–4), 199–216 (2007) CrossRefGoogle Scholar
  16. Limbert, G., Middleton, J.: A transversely isotropic viscohyperelastic material: application to the modeling of biological soft connective tissues. Int. J. Solids Struct. 41(15), 4237–4260 (2004) CrossRefzbMATHGoogle Scholar
  17. Lindley, D.V., Smith, A.F.: Bayes estimates for the linear model. J. R. Stat. Soc., Ser. B, Methodol. 34(1), 1–41 (1972) MathSciNetzbMATHGoogle Scholar
  18. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, New York (2003) zbMATHGoogle Scholar
  19. MATLAB: Version (R2013a). The MathWorks Inc., Natick (2013) Google Scholar
  20. Miller, K., Chinzei, K.: Mechanical properties of brain tissue in tension. J. Biomech. 35(4), 483–490 (2002) CrossRefGoogle Scholar
  21. Nava, A., Mazza, E., Furrer, M., Villiger, P., Reinhart, W.: In vivo mechanical characterization of human liver. Med. Image Anal. 12(2), 203–216 (2008) CrossRefGoogle Scholar
  22. Pioletti, D.P., Rakotomanana, L.R.: Nonlinear viscoelastic laws for soft biological tissues. Eur. J. Mech. A, Solids 19, 749–759 (2000) CrossRefzbMATHGoogle Scholar
  23. Pukelsheim, F.: Optimal Design of Experiments, vol. 50. SIAM, Philadelphia (1993) zbMATHGoogle Scholar
  24. Rashid, B., Destrade, M., Gilchrist, M.D.: Mechanical characterization of brain tissue in simple shear at dynamic strain rates. J. Mech. Behav. Biomed. Mater. 28, 71–85 (2013) CrossRefGoogle Scholar
  25. Ryan, E.G., Drovandi, C.C., McGree, J.M., Pettitt, A.N.: A review of modern computational algorithms for Bayesian optimal design. Int. Stat. Rev. 84(1), 128–154 (2016) MathSciNetCrossRefGoogle Scholar
  26. Sahoo, D., Deck, C., Willinger, R.: Development and validation of an advanced anisotropic visco-hyperelastic human brain FE model. J. Mech. Behav. Biomed. Mater. 33, 24–42 (2014) CrossRefGoogle Scholar
  27. Saprunov, I., Gergesova, M., Emri, I.: Prediction of viscoelastic material functions from constant stress- or strain-rate experiments. Mech. Time-Depend. Mater. 18, 349–372 (2014) CrossRefGoogle Scholar
  28. Sivia, D.S.: Data Analysis: A Bayesian Tutorial. Oxford University Press, Oxford (1996) zbMATHGoogle Scholar
  29. Tamura, A., Hayashi, S., Watanabe, I., Nagayama, K., Matsumoto, T.: Mechanical characterization of brain tissue in high-rate compression. J. Biomech. Sci. Eng. 2(3), 115–126 (2007) CrossRefGoogle Scholar
  30. Troyer, K.L., Shetye, S.S., Puttlitz, C.M.: Experimental characterization and finite element implementation of soft tissue nonlinear viscoelasticity. J. Biomech. Eng. 134, 114,501 (2012) CrossRefGoogle Scholar
  31. Vena, P., Gastaldi, D., Contro, R.: A constituent-based model for the nonlinear viscoelastic behavior of ligaments. J. Biomech. Eng. 128, 449–457 (2006) CrossRefGoogle Scholar
  32. Wineman, A.: Nonlinear viscoelastic solids—a review. Math. Mech. Solids 14(3), 300–366 (2009) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Materials EngineeringUniversity of CincinnatiCincinnatiUSA
  2. 2.Mathematics and Computer Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations