Age estimation using local direction and moment pattern (LDMP) features

  • Manisha SawantEmail author
  • Shalini Addepalli
  • Kishor Bhurchandi


An automatic estimation of age from face images is gaining attention due to its interesting applications such as age-based access control, customer profiling for targeted advertisements and video surveillance. However, age estimation from a face image is challenging due to complex interpersonal biological aging process, incomplete databases and dependency of facial aging on extrinsic and intrinsic factors. The published literature on age estimation utilizes multiple existing feature descriptors and then combines them into a hybrid feature vector. There is still an absence of specially designed aging feature descriptor which encodes facial aging cues. To address this issue we propose aging feature descriptor; Local Direction and Moment Pattern (LDMP), which capture directional and textural variations due to aging. We encode the orientation information available in eight unique directions. The texture is embedded into the magnitudes of higher order moments which we extract using local Tchebichef moments. Next, orientation and texture information is combined into a robust feature descriptor. To learn the age estimator, we apply warped Gaussian process regression on the proposed feature vector. Experimental analysis demonstrates the effectiveness of the proposed method on two large databases FG-NET and MORPH-II.


Age estimation Directional filter Local Tchebichef moment Warped Gaussian process regression 



  1. 1.
    Ahonen T, Rahtu E, Ojansivu V, Heikkila J (2008) Recognition of blurred faces using local phase quantization. In: 19th International conference on pattern recognition, 2008. ICPR 2008. IEEE, pp 1–4Google Scholar
  2. 2.
    Bigun J, du Buf JH (1994) N-folded symmetries by complex moments in Gabor space and their application to unsupervised texture segmentation. IEEE Trans Pattern Anal Mach Intell 16(1):80–87CrossRefGoogle Scholar
  3. 3.
    Budka M, Gabrys B (2013) Density-preserving sampling: robust and efficient alternative to cross-validation for error estimation. IEEE Trans Neural Netw Learn Syst 24(1):22–34CrossRefGoogle Scholar
  4. 4.
    Chang KY, Chen CS (2015) A learning framework for age rank estimation based on face images with scattering transform. IEEE Trans Image Process 24(3):785–798MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chang KY, Chen CS, Hung YP (2011) Ordinal hyperplanes ranker with cost sensitivities for age estimation. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 585–592Google Scholar
  6. 6.
    Chihara TS (2011) An introduction to orthogonal polynomials. Courier CorporationGoogle Scholar
  7. 7.
    Choi SE, Lee YJ, Lee SJ, Park KR, Kim J (2011) Age estimation using a hierarchical classifier based on global and local facial features. Pattern Recogn 44(6):1262–1281CrossRefGoogle Scholar
  8. 8.
    Chu Y, Zhao L, Ahmad T (2018) Multiple feature subspaces analysis for single sample per person face recognition. Vis Comput, 1–18Google Scholar
  9. 9.
    Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intell 23(6):681–685CrossRefGoogle Scholar
  10. 10.
    Dietterich T (1998) Approximate statistical tests for comparing supervised classification learning algorithms. Neur Comput 10(7):1895–1923CrossRefGoogle Scholar
  11. 11.
    Farage M, Miller K, Elsner P, Maibach H (2008) Intrinsic and extrinsic factors in skin ageing: a review. Int J Cosmet Sci 30(2):87–95CrossRefGoogle Scholar
  12. 12.
    Faraji MR, Qi X (2015) Face recognition under illumination variations based on eight local directional patterns. IET Biometrics 4(1):10–17CrossRefGoogle Scholar
  13. 13.
    Feng S, Lang C, Feng J, Wang T, Luo J (2017) Human facial age estimation by cost-sensitive label ranking and trace norm regularization. IEEE Trans Multimed 19(1):136–148CrossRefGoogle Scholar
  14. 14.
    Fernández C., Huerta I, Prati A (2015) A comparative evaluation of regression learning algorithms for facial age estimation. In: Face and facial expression recognition from real world videos. Springer, pp 133–144Google Scholar
  15. 15.
    Flusser J, Zitova B, Suk T (2009) Moments and moment invariants in pattern recognition. WileyGoogle Scholar
  16. 16.
    Geng X, Yin C, Zhou ZH (2013) Facial age estimation by learning from label distributions. IEEE Trans Pattern Anal Mach Intell 35(10):2401–2412CrossRefGoogle Scholar
  17. 17.
    Geng X, Zhou ZH, Smith-Miles K (2007) Automatic age estimation based on facial aging patterns. IEEE Trans Pattern Anal Mach Intell 29(12):2234–2240CrossRefGoogle Scholar
  18. 18.
    Günay A, Nabiyev V (2018) A new facial age estimation method using centrally overlapped block based local texture features. Multimed Tools Appl 77(6):6555–6581CrossRefGoogle Scholar
  19. 19.
    Guo G, Mu G (2011) Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 657–664Google Scholar
  20. 20.
    Guo G, Mu G (2013) Joint estimation of age, gender and ethnicity: Cca vs. pls. In: 2013 10th IEEE international conference and workshops on Automatic face and gesture recognition (fg). IEEE, pp 1–6Google Scholar
  21. 21.
    Guo G, Mu G, Fu Y, Huang TS (2009) Human age estimation using bio-inspired features. In: IEEE Conference on computer vision and pattern recognition, 2009. CVPR 2009. IEEE, pp 112–119Google Scholar
  22. 22.
    Han H, Otto C, Liu X, Jain AK (2015) Demographic estimation from face images: human vs. machine performance. IEEE Trans Pattern Anal Mach Intell 37 (6):1148–1161CrossRefGoogle Scholar
  23. 23.
    Haralick RM (1987) Digital step edges from zero crossing of second directional derivatives. In: Readings in computer vision. Elsevier, pp 216–226Google Scholar
  24. 24.
    Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inform Theory 8(2):179–187CrossRefGoogle Scholar
  25. 25.
    Huerta I, Fernández C, Prati A (2014) Facial age estimation through the fusion of texture and local appearance descriptors. In: European conference on computer vision. Springer, pp 667–681Google Scholar
  26. 26.
    Jabid T, Kabir MH, Chae O (2010) Local directional pattern (LDP) for face recognition. In: 2010 Digest of technical papers international conference on consumer electronics (ICCE). IEEE, pp 329–330Google Scholar
  27. 27.
    Khotanzad A, Hong YH (1990) Invariant image recognition by Zernike moments. IEEE Trans Pattern Anal Mach Intell 12(5):489–497CrossRefGoogle Scholar
  28. 28.
    Kirsch RA (1971) Computer determination of the constituent structure of biological images. Computs Biomed Res 4(3):315–328CrossRefGoogle Scholar
  29. 29.
    Knuth DE (2007) Seminumerical algorithmsGoogle Scholar
  30. 30.
    Kwon YH, da Vitoria Lobo N (1999) Age classification from facial images. Comput Vis Image Understand 74(1):1–21CrossRefGoogle Scholar
  31. 31.
    Lanitis A, Taylor CJ, Cootes TF (2002) Toward automatic simulation of aging effects on face images. IEEE Trans Pattern Anal Mach Intell 24(4):442–455CrossRefGoogle Scholar
  32. 32.
    Lanitis A, Draganova C, Christodoulou C (2004) Comparing different classifiers for automatic age estimation. IEEE Trans Syst Man Cybern Part B (Cybern) 34(1):621–628CrossRefGoogle Scholar
  33. 33.
    Li Y, Peng Z, Liang D, Chang H, Cai Z (2016) Facial age estimation by using stacked feature composition and selection. Vis Comput 32(12):1525–1536CrossRefGoogle Scholar
  34. 34.
    Liao SX, Pawlak M (1996) On image analysis by moments. IEEE Trans Pattern Anal Mach Intell 18(3):254–266CrossRefGoogle Scholar
  35. 35.
    Ling H, Soatto S, Ramanathan N, Jacobs DW (2007) A study of face recognition as people age. In: IEEE 11th International conference on computer vision, 2007. ICCV 2007. IEEE, pp 1–8Google Scholar
  36. 36.
    Lu J, Liong VE, Zhou J (2015) Cost-sensitive local binary feature learning for facial age estimation. IEEE Trans Image Process 24(12):5356–5368MathSciNetCrossRefGoogle Scholar
  37. 37.
    Marcos JV, Cristóbal G (2013) Texture classification using discrete tchebichef moments. JOSA A 30(8):1580–1591CrossRefGoogle Scholar
  38. 38.
    Mitchell T, Buchanan B, DeJong G, Dietterich T, Rosenbloom P, Waibel A (1990) Machine learning. Ann Rev Comput Sci 4(1):417–433CrossRefGoogle Scholar
  39. 39.
    Mukundan R (2014) Local tchebichef moments for texture analysisGoogle Scholar
  40. 40.
    Mukundan R, Ong S, Lee PA (2001) Image analysis by Tchebichef moments. IEEE Trans Image Process 10(9):1357–1364MathSciNetCrossRefGoogle Scholar
  41. 41.
    Ouloul IM, Moutakki Z, Afdel K, Amghar A (2018) Improvement of age estimation using an efficient wrinkles descriptor. Multimed Tools Appl, 1–35Google Scholar
  42. 42.
    Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The feret evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22 (10):1090–1104CrossRefGoogle Scholar
  43. 43.
    Pontes JK, Britto Jr AS, Fookes C, Koerich AL (2016) A flexible hierarchical approach for facial age estimation based on multiple features. Pattern Recogn 54:34–51Google Scholar
  44. 44.
    Prewitt JM (1970) Object enhancement and extraction. Picture Process Psychopictorics 10(1):15–19Google Scholar
  45. 45.
    Ramanathan N, Chellappa R (2006) Modeling age progression in young faces. In: 2006 IEEE Computer society conference on computer vision and pattern recognition, vol 1. IEEE, pp 387–394Google Scholar
  46. 46.
    Rasmussen C (2006) Cki williams gaussian processes for machine learning mit press. CambridgeGoogle Scholar
  47. 47.
    Ricanek K, Tesafaye T (2006) Morph: a longitudinal image database of normal adult age-progression. In: 7th International conference on automatic face and gesture recognition, 2006. FGR 2006. IEEE, pp 341–345Google Scholar
  48. 48.
    Rivera AR, Castillo JR, Chae OO (2013) Local directional number pattern for face analysis: face and expression recognition. IEEE Trans Image Process 22(5):1740–1752MathSciNetCrossRefGoogle Scholar
  49. 49.
    Rivera AR, Castillo JR, Chae O (2015) Local directional texture pattern image descriptor. Pattern Recogn Lett 51:94–100CrossRefGoogle Scholar
  50. 50.
    Snelson E, Ghahramani Z, Rasmussen CE (2004) Warped gaussian processes. In: Advances in neural information processing systems, pp 337–344Google Scholar
  51. 51.
    Suo J, Wu T, Zhu S, Shan S, Chen X, Gao W (2008) Design sparse features for age estimation using hierarchical face model. In: 8th IEEE International conference on automatic face & gesture recognition, 2008. FG’08. IEEE, pp 1–6Google Scholar
  52. 52.
    Teh CH, Chin RT (1988) On image analysis by the methods of moments. IEEE Trans Pattern Ana Mach Intell 10(4):496–513CrossRefGoogle Scholar
  53. 53.
    The fg-net aging database.
  54. 54.
    Thukral P, Mitra K, Chellappa R (2012) A hierarchical approach for human age estimation. In: 2012 IEEE International conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 1529–1532Google Scholar
  55. 55.
    Wang M, Knoesen A (2007) Rotation-and scale-invariant texture features based on spectral moment invariants. JOSA A 24(9):2550–2557CrossRefGoogle Scholar
  56. 56.
    Wang S, Tao D, Yang J (2016) Relative attribute svm+ learning for age estimation. IEEE Trans Cybern 46(3):827–839CrossRefGoogle Scholar
  57. 57.
    Wee CY, Paramesran R, Mukundan R, Jiang X (2010) Image quality assessment by discrete orthogonal moments. Pattern Recogn 43(12):4055–4068CrossRefGoogle Scholar
  58. 58.
    Weng R, Lu J, Yang G, Tan YP (2013) Multi-feature ordinal ranking for facial age estimation. In: 2013 10th IEEE international conference and workshops on automatic face and gesture recognition (FG). IEEE, pp 1–6Google Scholar
  59. 59.
    Wu T, Turaga P, Chellappa R (2012) Age estimation and face verification across aging using landmarks. IEEE Trans Inf Forens Secur 7(6):1780–1788CrossRefGoogle Scholar
  60. 60.
    Yap PT, Raveendran P (2004) Image focus measure based on chebyshev moments. IEE Proc-Vis Image Signal Process 151(2):128–136CrossRefGoogle Scholar
  61. 61.
    Yap PT, Paramesran R, Ong SH (2003) Image analysis by Krawtchouk moments. IEEE Trans Image Process 12(11):1367–1377MathSciNetCrossRefGoogle Scholar
  62. 62.
    Zhang Y, Yeung DY (2010) Multi-task warped gaussian process for personalized age estimation. In: 2010 IEEE Conference on computer vision and pattern recognition (CVPR). IEEE, pp 2622–2629Google Scholar
  63. 63.
    Zhao W, Krishnaswamy A, Chellappa R, Swets DL, Weng J (1998) Discriminant analysis of principal components for face recognition. In: Face recognition. Springer, pp 73–85Google Scholar
  64. 64.
    Zhao W, Chellappa R, Phillips PJ, Rosenfeld A (2003) Face recognition: A literature survey. ACM Comput Surveys (CSUR) 35(4):399–458CrossRefGoogle Scholar
  65. 65.
    Zhu K, Gong D, Li Z, Tang X (2014) Orthogonal Gaussian process for automatic age estimation. In: Proceedings of the 22nd ACM international conference on multimedia. ACM, pp 857–860Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Visvesvaraya National Institute of TechnologyNagpurIndia

Personalised recommendations