Advertisement

Risk management of commodity trade business based on deep learning and parallel processing of visual multimedia big data

  • Han ZhangEmail author
  • Ziqin Wei
Article
  • 15 Downloads

Abstract

In order to solve the problems of low execution efficiency, big data error in risk analysis and high resource consumption in risk management of commodity trade business, this paper designs a feasible and credible risk management scheme of commodity trade business based on in-depth learning and parallel big data processing, combined with visual multimedia scheme. Based on the in-depth study of commodity trade data model, this paper extracts the features of visualized multimedia data of commodity trade business, which ensures that the extracted features adapt to dynamic and changeable diversified business. Then, this paper designs a commodity trade business management platform, which can provide dynamic migration support for the visualized multimedia data of commodity trade business. Therefore, this paper puts forward a management mechanism that can deal with the risks of commodity trade business. Finally, the simulation experiments prove the rationality and advantages of the proposed algorithm in terms of the accuracy of risk analysis, the efficiency of visual multimedia data processing and the effectiveness of commodity trade business management.

Keywords

Risk management Commodity trade business Deep learning Parallel processing Visual multimedia big data 

Notes

References

  1. 1.
    Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson's disease: risk factors and prevention[J]. Lancet Neurol 15(12):1257–1272CrossRefGoogle Scholar
  2. 2.
    Benson D, Lorenzoni I, Cook H (2016) Evaluating social learning in England flood risk management: an ‘individual-community interaction’ perspective[J]. Environ Sci Pol 55(14):326–334CrossRefGoogle Scholar
  3. 3.
    Broll U, Wong KP (2017) Managing revenue risk of the firm: commodity futures and options[J]. IMA J Manag Math 28(2):245–258MathSciNetGoogle Scholar
  4. 4.
    Chen Y, Lin Z, Zhao X et al (2017) Deep learning-based classification of hyperspectral data[J]. IEEE J-Stars 7(6):2094–2107Google Scholar
  5. 5.
    Chen Y, Xu P et al (2018) Sequence synopsis: optimize visual summary of temporal event data[J]. IEEE Trans Vis Comput Graph 24(1):45–55MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen X, Self JZ, House L et al (2018) Be the data: embodied visual analytics[J]. IEEE Trans Learn Technol 11(1):81–95CrossRefGoogle Scholar
  7. 7.
    Choi HG, Lee MJ, Lee SM (2018) Visual impairment and risk of depression: a longitudinal follow-up study using a national sample cohort[J]. Sci Rep 8(1):2083CrossRefGoogle Scholar
  8. 8.
    Giannakis M, Papadopoulos T (2016) Supply chain sustainability: a risk management approach[J]. Int J Prod Econ 171:455–470CrossRefGoogle Scholar
  9. 9.
    Jia U, Jeong IK, Kang M et al (2016) Accelerating IP routing algorithm using graphics processing unit for high speed multimedia communication[J]. Multimed Tools Appl 75(23):15365–15379CrossRefGoogle Scholar
  10. 10.
    Jordan Crouser R, Franklin L, Cook K (2017) Rethinking visual analytics for streaming data applications[J]. IEEE Internet Comput 21(4):72–76CrossRefGoogle Scholar
  11. 11.
    Kallenberg M, Petersen K, Nielsen M et al (2016) Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring[J]. IEEE Trans Med Imaging 35(5):1322–1331CrossRefGoogle Scholar
  12. 12.
    Kharrazi A, Kraines S, Rovenskaya E et al (2015) Examining the ecology of commodity trade networks using an ecological information-based approach: toward strategic assessment of resilience[J]. J Ind Ecol 19(5):805–813CrossRefGoogle Scholar
  13. 13.
    Kharrazi A, Rovenskaya E, Fath BD (2017) Network structure impacts global commodity trade growth and resilience[J]. PLoS One 12(2):e0171184CrossRefGoogle Scholar
  14. 14.
    Kocoloski B, Lange J (2016) Lightweight memory Management for High Performance Applications in consolidated environments[J]. IEEE T Parall Distr 27(2):468–480CrossRefGoogle Scholar
  15. 15.
    Lee I, Kim S, Lee H (2016) .al optimal beam steering for maximal visual quality over a multimedia broadcasting system[J]. IEEE Trans Broadcast 62(1):35–45CrossRefGoogle Scholar
  16. 16.
    Li Q, Niu B, Chu L-K (2017) Forward sourcing or spot trading? Optimal commodity procurement policy with demand uncertainty risk and forecast update[J]. IEEE Syst J 11(3):1526–1536CrossRefGoogle Scholar
  17. 17.
    Liu W, Zhang T (2016) Multimedia hashing and networking[J]. IEEE MultiMedia 23(3):75–79CrossRefGoogle Scholar
  18. 18.
    Qiu J, Wu Q, Ding G et al (2016) A survey of machine learning for big data processing[J]. EURASIP J Adv Sig Pr 2016(1):67CrossRefGoogle Scholar
  19. 19.
    Řezník T, Lukas V, Charvát K et al (2017) Disaster risk reduction in agriculture through geospatial (big) data processing[J]. ISPRS Int J Geo-Inf 6(8):238CrossRefGoogle Scholar
  20. 20.
    Taušer J, Čajka R (2014) Hedging techniques in commodity risk management[J]. Agric Econ 60(4):174–182Google Scholar
  21. 21.
    Wang C (2018) Graph-based techniques for visual analytics of scientific data sets[J]. Comput Sci Eng 20(1):93–103CrossRefGoogle Scholar
  22. 22.
    Wang B, Jiang J, Wu Y et al (2018) Accelerating MapReduce on commodity clusters: an SSD-empowered approach[J]. IEEE Transactions on Big Data 4(3):396–407CrossRefGoogle Scholar
  23. 23.
    Worring M, Koelma D, Zahálka J (2016) Multimedia pivot tables for multimedia analytics on image collections[J]. IEEE T Multimedia 18(11):2217–2227CrossRefGoogle Scholar
  24. 24.
    Zhang T, Li H, Li J et al (2018) A dynamic combined flow algorithm for the two-commodity max-flow problem over delay-tolerant networks[J]. IEEE Trans Wirel Commun 17(12):7879–7893MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zou Y, Kiviniemi A, Jones SW (2017) A review of risk management through BIM and BIM-related technologies[J]. Saf Sci 97:88–98CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Computer Science and Information EngineeringAnyang Institute of TechnologyAnyangChina

Personalised recommendations