Advertisement

GP based smart reversible watermarking of depth image based rendering for stereoscopic images

  • Tariq Bashir
  • Imran UsmanEmail author
  • Abdulaziz Albesher
  • Khalid A. Almejalli
  • Syed Saud Naqvi
Article
  • 10 Downloads

Abstract

Depth Image Based Rendering (DIBR) for 3D-TV, or free-view TV, is one of the most promising techniques in multimedia world, whereby a monoscopic image and the depth image of the same view are utilized to generate stereoscopic left and right images. Therefore, the protection of valuable content generated for 3D TV is an important concern in the world of digital media. In this paper, we exploit an interpolation errors expansion scheme by employing Genetic Programming based smart reversible watermarking technique that is viable for 3D-TV. The proposed technique exploits directional weights using hidden dependencies pertaining to the imperceptibility and capacity of the watermark in a previously established interpolation scheme. It then embeds the watermark in the 3D content using interpolation error expansion based reversible watermarking scheme. Previously presented empirical techniques are not much effective as they use hit and trial strategies for selecting optimal weights for watermark embedding. The proposed technique achieves significant watermark capacity as well as imperceptibility, and is reversible when compared to existing state of the art techniques.

Keywords

Interpolation error expansion Reversible watermarking Genetic programming (GP) Depth image based rendering 3D television (DIBR 3D-TV) 

Notes

References

  1. 1.
  2. 2.
    Abdeldaim AM, Sahlol AT, Elhoseny M, Hassanien AE (2018) Computer-aided acute lymphoblastic leukemia diagnosis system based on image analysis. In: Hassanien A, Oliva D (eds) Advances in soft computing and machine learning in image processing studies in computational intelligence. Springer, Cham, p 730.  https://doi.org/10.1007/978-3-319-63754-9 CrossRefGoogle Scholar
  3. 3.
    Alattar AM (2003) Reversible watermark using difference expansion of triplets. International Conference on Image Processing (ICIP) 1:501–504Google Scholar
  4. 4.
    Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13:1147–1156MathSciNetCrossRefGoogle Scholar
  5. 5.
    Alattar AM (2004) Reversible watermark using difference expansion of quads. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 3:377–380Google Scholar
  6. 6.
    Baird JL BAIRD TELEVISION (Online) Available: http://www.bairdtelevision.com. Accessed 10 Dec 2018
  7. 7.
    Barton JM (1997) Method and apparatus for embedding authentication information within digital data. ed: Google PatentsGoogle Scholar
  8. 8.
    Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-LSB data embedding. IEEE Trans Image Process 14:253–266CrossRefGoogle Scholar
  9. 9.
    Chang CC, Lin CC, Tseng CS, Tai WL (2007) Reversible hiding in DCT-based compressed images. 141:123–138Google Scholar
  10. 10.
    Chen X, Sun X, Sun H, Zhou Z, Zhang J (2013) Reversible watermarking method based on asymmetric-histogram shifting of prediction errors. J Syst Softw 86:2620–2626CrossRefGoogle Scholar
  11. 11.
    Christoph F (2003) A 3D-TV approach using Depth Image Based Rendering (DIBR). Visualization, Imaging, and Image Processing (VIIP), Benalmadena, Spain 482-487Google Scholar
  12. 12.
    Christoph F (2004) Depth-image-based rendering (dibr), compression, and transmission for a new approach on 3d-tv. SPIE Stereoscopic Displays Virtual Reality System XI 5291:93–104CrossRefGoogle Scholar
  13. 13.
    Coltuc D (2011) Improved embedding for prediction-based reversible watermarking. IEEE Trans Inf Forensics Security 6:873–882CrossRefGoogle Scholar
  14. 14.
    Coltuc D (2012) Low distortion transform for reversible watermarking. IEEE Trans Image Process 21:412–417MathSciNetCrossRefGoogle Scholar
  15. 15.
    Coltuc D, Chassery JM (2007) Very fast watermarking by reversible contrast mapping. IEEE Signal Process Lett 14:255–258CrossRefGoogle Scholar
  16. 16.
    Hee DK, Ji WL, Tae WO, Heung KL (2012) Robust DT-CWT watermarking for DIBR 3D images. IEEE Trans on Broadcasting 58(4):533–543CrossRefGoogle Scholar
  17. 17.
    Hong WCJ, Chen TS (2009) Blockwise reversible data hiding by contrast mapping. Inf Technol J 8:1287–1291CrossRefGoogle Scholar
  18. 18.
    Honsinger CW, Jones PW, Rabbani M, Stoffel JC (2001) Lossless recovery of an original image containing embedded data. ed: Google PatentsGoogle Scholar
  19. 19.
    Hyoung JK, Sachnev V, Qing SY, Jeho N, Hyon GC (2008) A novel difference expansion transform for reversible data embedding. IEEE Trans Inf Forensics Security 3:456–465CrossRefGoogle Scholar
  20. 20.
    Jun T (2003) Reversible data embedding using a difference expansion. IEEE Trans on Circuits and Systems for Video Technology 13:890–896CrossRefGoogle Scholar
  21. 21.
    Kamstra L, Heijmans HJAM (2005) Reversible data embedding into images using wavelet techniques and sorting. IEEE Trans Image Process 14:2082–2090MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kim HD, Lee JW, Oh TW, Lee HK (2012) Robust DT-CWT watermarking for DIBR 3D images. IEEE Trans Broadcast 58(4):533–543CrossRefGoogle Scholar
  23. 23.
    Ko LT, Chen JE, Shieh YS, Hsin HC, Sung TY (2011) Nested quantization index modulation for reversible watermarking and its application to healthcare information management systems. Computational and Mathematical Methods in Medicine, 2012Google Scholar
  24. 24.
    Ko LT, Chen JE, Shieh YS, Scalia M, Sung TY (2012) A novel fractional-discrete-cosine-transform-based reversible watermarking for healthcare information management systems. Math Probl EngGoogle Scholar
  25. 25.
    Lin CC, Shiu PF (2010) DCT-based reversible data hiding scheme. J Softw 5(2):214–224CrossRefGoogle Scholar
  26. 26.
    Lin YH, Wu JL (2011) A digital blind watermarking for depth-image-based rendering 3D images. IEEE Trans Broadcast 57(2):602–611CrossRefGoogle Scholar
  27. 27.
    Luo L, Zhenyong C, Ming C, Xiao Z, Zhang X (2010) Reversible image watermarking using interpolation technique. IEEE Trans Inf Forensics Security 5:187–193CrossRefGoogle Scholar
  28. 28.
    Luo TL, Gangyi J, Mei Y, Haiyong X, Feng S (2016) Inter-view local texture analysis based stereo image reversible data hiding. Digital Signal Processing 48:116–129MathSciNetCrossRefGoogle Scholar
  29. 29.
    Memon NA, Khan A, Gilani S, Muhammad A (2011) Reversible watermarking method based on adaptive thresholding and companding technique. Int J Comput Math 88:1573–1594MathSciNetCrossRefGoogle Scholar
  30. 30.
    Ming C, Zhenyong C, Xiao Z, Zhang X (2009) Reversible image watermarking based on full context prediction. 16th IEEE International Cnference on Image Processing, p 4253–4256Google Scholar
  31. 31.
    Mohamed E, Gustavo RG, Osama MAE, Shihab AS, Arunkumar N, Ahmed F (2018) Secure medical data transmission model for IoT-based healthcare systems. IEEE Access 6:20596–20608CrossRefGoogle Scholar
  32. 32.
    Mohamed E, Diego O, Valentín OE, Aboul EH, Gunasekaran M (2018) Parameter identification of two dimensional digital filters using electro-magnetism optimization. Multimed Tools Appl In Press.  https://doi.org/10.1007/s11042-018-6095-1
  33. 33.
    Naheed T, Usman I, Khan TM, Dar AH, Shafique MF (2014) Intelligent reversible watermarking technique in medical images using GA and PSO. Optik 125:2515–2525CrossRefGoogle Scholar
  34. 34.
    Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16:354–362CrossRefGoogle Scholar
  35. 35.
    Redert A, de Beeck MO, Fehn C, Ijsselsteijn W, Pollefeys M, Van GL (2002) Advanced three-dimensional television system technologies (2002) Proceedings First International Symposium on 3D Data Processing Visualization and Transmission, p 313–319Google Scholar
  36. 36.
    Saberian MJ, Akhaee M, Marvasti F (2008) An invertible quantization based watermarking approach. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, p 1677–1680Google Scholar
  37. 37.
    Sara SA Genetic Programming Toolbox for MATLAB. http://gplab.sourceforge.net/. Accessed 10 Dec 2018
  38. 38.
    Scharstein D, Szelisk R The Middlebury Computer Vision Page (Online). Available: http://vision.middlebury.edu/. Accessed 10 Dec 2018
  39. 39.
    Seung WJ (2016) Lossless embedding of depth hints in JPEG compressed color images. Signal Process 122:39–51CrossRefGoogle Scholar
  40. 40.
    Seung HN, Seung MM, Heung KL, Wook HK, Jong UH, Sunghee C (2018) A SIFT features based blind watermarking for DIBR 3D images. Multimed Tools Appl 77:7811–7850.  https://doi.org/10.1007/s11042-017-4678-x CrossRefGoogle Scholar
  41. 41.
    Sriti T, Amit KS, Satya PG, Mohamed E (2018) Multi-layer security of medical data through watermarking and chaotic encryption for tele-health applications. Multimed Tools Appl First Online.  https://doi.org/10.1007/s11042-018-6263-3
  42. 42.
    Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13:890–896CrossRefGoogle Scholar
  43. 43.
    Tseng HW, Hsieh V (2009) Prediction-based reversible data hiding. Inf Sci 179:2460–2469CrossRefGoogle Scholar
  44. 44.
    Tzu CL, Ying HH (2008) The distortion control method of reversible contrast mapping hiding scheme. International Conference on Intelligent Information Hiding and Multimedia Signal Processing, p 1133–1136Google Scholar
  45. 45.
    Usman I, Khan A (2010) BCH coding and intelligent watermark embedding: employing both frequency and strength selection. Appl Soft Comput 10(1):332–343CrossRefGoogle Scholar
  46. 46.
    Vleeschouwer CD, Delaigle JF, Macq B (2001) Circular interpretation of histogram for reversible watermarking. IEEE Fourth Workshop on Multimedia Signal Processing, p 345–350Google Scholar
  47. 47.
    Vleeschouwer CD, Delaigle JF, Macq B (2003) Circular interpretation of bijective transformations in lossless watermarking for media asset management. IEEE Trans on Multimedia 5:97–105CrossRefGoogle Scholar
  48. 48.
    Wen CY (2015) Ling HC (2015) reversible DCT-based data hiding in stereo images. Multimed Tools Appl 74(17):7181–7193CrossRefGoogle Scholar
  49. 49.
    Xuan G, Yao Q, Yang C, Gao J, Chai P, Shi YQ (2006) Lossless data hiding using histogram shifting method based on integer wavelets. Digital Watermarking, Springer, p 323–332Google Scholar
  50. 50.
    Yang B, Schmucker M, Funk W, Busch C, Sun S (2004) Integer DCT-based reversible watermarking for images using companding technique. Electronic Imaging 405-415Google Scholar
  51. 51.
    Yiu MC, Hao TW (2007) A sequential quantization strategy for data embedding and integrity verification. IEEE Trans Circuits Syst Video Technol 17:1007–1016CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringCOMSATS UniversityIslamabadPakistan
  2. 2.College of Computing and InformaticsSaudi Electronic UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations