Multimedia Tools and Applications

, Volume 78, Issue 14, pp 20019–20036 | Cite as

Image feature based high capacity steganographic algorithm

  • Rajib Biswas
  • Imon MukherjeeEmail author
  • Samir Kumar Bandyopadhyay


Steganography is the growing field of research, where hiding techniques are used to secure the communicative elements (e.g., images). In this paper, the message is hidden in the color image in spatial domain, exploring multi-bit Least Significant Bit (mLSB) steganography. Path trace, based on eccentricity of pixels gives the potential pixels to capacitate more hiding scope. Perspective based technique and meticulous statistical analysis are applied to immune the algorithm from sterilization along with other attacks. The algorithm overcome different tests done by benchmark like StirMark Benchmark 4.0, Receiver Operating Characteristic (ROC) curve. Visual Steganalysis and statistical tools like Dual Statistical Method and Histogram Difference are used to test the security and imperceptibility.The algorithm also ensures security with insignificant visual disturbance/distortion. Capacity per pixel after embedding, ranges from 9-bits to 12-bits and the minimum capacity per color per pixel is 2.37 and maximum is 2.69. The time complexity of the proposed algorithm is O(n2). The robustness is increased by unpredictable selection of bit for embedding.


Steganography Steganalysis Data hiding Information hiding Path trace 



  1. 1.
    Chandramouli R, Kharrazi M, Memon N, Steganography Image (2004) Steganalysis concepts and practice. In: Kalker T et al. (eds) IWDW 2003, LNCS 2939. Springer, Berlin, pp 35–49Google Scholar
  2. 2.
    Chang C-C, Hsiao J-Y, Chan C-S (2003) Finding optimal least-significant-bit substitution in image hiding by dynamic programming strategy. Pattern Recognit 36:1583–1595CrossRefGoogle Scholar
  3. 3.
    Chao R-M, Wu H-C, Lee C-C, Chu Y-P (2009) A novel image data hiding scheme with diamond encoding. EURASIP J Inf Secur, (1), ID 658047Google Scholar
  4. 4.
    Chen W-J, Chang C-C, Le THN (2010) High payload steganography mechanism using hybrid edge detector. Expert Syst Appl 37:3292–3301Google Scholar
  5. 5.
    Chen M, Boroumand M, Fridrich J (2018) Deep learning regressors for quantitative steganalysis. Media Watermarking, Security, and Forensics, 160-1-160-7(7)Google Scholar
  6. 6.
    Chugh G, Yadav R, Saini R (2014) A new image steganographic approach based on mod factor for RGB images. Int J Signal Process Image Process Pattern Recogn 7 (3):27–44Google Scholar
  7. 7.
    Das S, Muhammad K, Bakshi S, Mukherjee I, Sa PK, Sangaiah AK, Bruno A (2018) Lip biometric template security framework using spatial steganography. Pattern Recognition Letters, ISSN: 0167-8655Google Scholar
  8. 8.
    Datta B, Roy S, Roy S, Bandyopadhyay SK (2018) Multi-bit robust image steganography based on modular arithmetic. Multimedia Tools and Applications, ISSN: 1380-7501Google Scholar
  9. 9.
    Dumitrescu S, Wu X, Memon N (2002) On steganalysis of random LSB embedding in continuous-tone images, IEEE ICIP 2002, New York, USA, vol III, pp 641–644Google Scholar
  10. 10.
    Dumitrescu S, Wu X, Wang Z (2002) Detection of LSB steganography via sample pairs analysis. In: Petitcolas FAP (ed) Information hiding, 5th international workshop, volume 2578 of lecture notes in computer science, Noordwijkerhout The Netherlands, October 7–9. Springer, New York, pp 355–372Google Scholar
  11. 11.
    Fan J, Upadhye S, Worster A (2006) Understanding receiver operating characteristic (ROC) curves. Canad J Emerg Med (CJEM) 8(1):19–20. PubMed PMID: 17175625Google Scholar
  12. 12.
    Feng B, Lu W, Sun W (2015) Secure binary image steganography based on minimizing the distortion on the texture. IEEE Trans Inf Forens Secur 10(2):243–255. ISSN 1556-6013CrossRefGoogle Scholar
  13. 13.
    Fridrich J, Goljan M, Dui R (2001) Reliable detection of LSB steganography in color and grayscale images. In: Proceedings of the ACM workshop on multimedia and security. Ottawa, pp 27–30Google Scholar
  14. 14.
    Fridrich J, Lisonek P, Soukal D (2008) On steganographic embedding efficiency, information hiding. In: 8th international workshop, vol 4437. Alexandria, pp 282–296Google Scholar
  15. 15.
    Ge S, Gao Y, Wang R (2007) Least significant bit steganography detection with machine learning techniques. In: ACM SIGKDD Workshop on domain driven data mining (DDDM2007). San JoseGoogle Scholar
  16. 16.
    He J, Lan W, Tang S (2017) A secure image sharing scheme with high quality stego-images based on steganography. Multimed Tools Appl 76(6):7677–7698. ISSN: 1380-7501 (Print) 1573-7721 (Online)CrossRefGoogle Scholar
  17. 17.
    Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8(2):179–187CrossRefzbMATHGoogle Scholar
  18. 18.
    Ioannidou A, Halkidis ST, Stephanides G (2012) A novel technique for image steganography based on a high payload method and edge detection. Expert Syst Appl 39:11517–11524CrossRefGoogle Scholar
  19. 19.
    Johnson NF, Jajodia S (1998) Exploring steganography: seeing the unseen. IEEE Comput 31(2):26–34CrossRefGoogle Scholar
  20. 20.
    Johnson N, Jajodia S (1998) Steganalysis: the investigation of hidden information. In: Proceedings of the 1998 IEEE information technology conference, pp 113–116Google Scholar
  21. 21.
    Johnson N, Jajodia S (1998) Steganalysis of images created using current steganography software, volume 1525 of lecture notes in computer science, pp 273–289Google Scholar
  22. 22.
    Kanan HR, Nazeri B (2014) A novel image steganography scheme with high embedding capacity and tunable visual image quality based on a genetic algorithm. Expert Syst Appl 41:6123–6130CrossRefGoogle Scholar
  23. 23.
    Kim C (2014) Data hiding by an improved exploiting modification direction. Multimed Tools Appl 69(3):569–584CrossRefGoogle Scholar
  24. 24.
    Kim C, Shin D, Shin D, Zhang X (2011) Improved steganographic embedding exploiting modification direction in multimedia communications. In: FTRA International conference on secure and trust computing,data management and application. Springer, pp 130–138Google Scholar
  25. 25.
    Lee C-F, Chang C-C, Wang K-H (2008) An improvement of emd embedding method for large payloads by pixel segmentation strategy. Image Vis Comput 26 (12):1670–1676CrossRefGoogle Scholar
  26. 26.
    Lin C-C (2011) An information hiding scheme with minimal image distortion. Comput Standards Interfaces 33(5):477–484. ISSN: 0920-5489CrossRefGoogle Scholar
  27. 27.
    Liao X, Wen Q-y, Zhao Z-l, Zhang J (2012) A novel steganographic method with four-pixel differencing and modulus function. Fundamenta Informaticae 118:281–289. ISSN 0169-2968MathSciNetGoogle Scholar
  28. 28.
    Liao X, Qin Z, Ding L (2017) Data embedding in digital images using critical functions. Signal Process Image Commun 58(C):146–156. ISSN: 0923-5965CrossRefGoogle Scholar
  29. 29.
    Liao X, Guo S, Yin J, Wang H, Li X, Sangaiah AK (2018) New cubic reference table based image steganography. Multimed Tools Appl 77(8):10033–10050. ISSN: 1380-7501CrossRefGoogle Scholar
  30. 30.
    Li X, Yang B, Cheng D, Zeng T (2009) A generalization of LSB matching. IEEE Signal Process Lett 16:69–72CrossRefGoogle Scholar
  31. 31.
    Muhammad K, Ahmad J, Farman H, Jan Z, Sajjad M, Baik SW (2015) A secure method for color image steganography using gray-level modification and multi-level encryption. KSII Trans Internet Inf Syst 9:1938–1962Google Scholar
  32. 32.
    Muhammad K, Sajjad M, Mehmood I, Rho S, Baik SW (2016) A novel magic LSB substitution method (M-LSB-SM) using multi-level encryption and achromatic component of an image. J Multimed Tools Appl Archive 75(22):14867–14893CrossRefGoogle Scholar
  33. 33.
    Mukherjee (Ganguly) N, Paul G, Saha SK (2018) An efficient multi-bit steganography algorithm in spatial domain with two-layer security. Multimed Tools Appl 77(14):18451–18481CrossRefGoogle Scholar
  34. 34.
    Paul G, Davidson I, Mukherjee I, Ravi SS (2017) Keyless dynamic optimal multi-bit image steganography using energetic pixels. Multimed Tools Appl 76 (5):7445–7471CrossRefGoogle Scholar
  35. 35.
    Petitcolas FAP, Anderson JR, Kuhn GM (1525) Attacks on copyright marking systems. In: Aucsmith D (ed) Information hiding, second international workshop, IH’98, Portland, Oregon, U.S.A., April 15-17, 1998, Proceedings, LNCS. ISBN 3-540-65386-4. Springer, pp 219–239Google Scholar
  36. 36.
    Pradhan A, Sahu AK, Swain G, Sekhar KR (May 2016) Performance evaluation parameters of image steganography techniques. In: IEEE International conference on research advances in integrated navigation systems (RAINS). Bangalore, ISBN: 978-1-5090-1112-4Google Scholar
  37. 37.
    Provos N (2001) Abstract defending against statistical steganalysis. In: Proc of 10th USENIX security symposiumGoogle Scholar
  38. 38.
  39. 39.
    Wang R-Z, Lin C-F, Lin J-C (2001) Image hiding by optimal LSB substitution and genetic algorithm. Pattern Recognit 34:671–683CrossRefzbMATHGoogle Scholar
  40. 40.
    Weiqi L, Fangjun H, Jiwu H (2010) Edge adaptive image steganography based on LSB matching revisited. IEEE Trans Inf Forensics Secur 5:201–214CrossRefGoogle Scholar
  41. 41.
    Xu G, Wu H-Z, Shi YQ (2016) Ensemble of CNNs for steganalysis: an empirical study. In: Perez-Gonzales F, Cayre F, Bas P (eds) The 4th ACM workshop on information hiding and multimedia security, IH &MMSec ’16, pp 5–10, Vigo, Spain, June 20–22Google Scholar
  42. 42.
    Xu G, Wu HZ, Shi YQ (2016) Structural design of convolutional neural networks for steganalysis. IEEE Signal Process Lett 23(5):708–712CrossRefGoogle Scholar
  43. 43.
    Xu G, Stamm M, Kirchner M, Voloshynovskiy S (2017) Deep convolutional neural network to detect J-UNIWARD. In: The 5th ACM Workshop on information hiding and multimedia security. Philadelphia, PA, June 20–22Google Scholar
  44. 44.
    Yang CY, Wang WF (2015) Block-based colour image steganography using smart pixel-adjustment. In: Proc. of genetic and evolutionary computing. In: Advances in intelligent systems and computing, vol 329. Springer, Cham, pp 145–154Google Scholar
  45. 45.
    Ye J, Ni J, Yi Y (2017) Deep learning hierarchical representations for image steganalysis. IEEE Trans Inf Forens Secur 12(11):2545–2557CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Information TechnologyHeritage Institute of TechnologyKolkataIndia
  2. 2.Computer Science and EngineeringIndian Institute of Information TechnologyKalyaniIndia
  3. 3.Computer Science and EngineeringCalcutta UniversityKolkataIndia

Personalised recommendations