Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 14, pp 20191–20216 | Cite as

A general framework for complex network-based image segmentation

  • Youssef MourchidEmail author
  • Mohammed El Hassouni
  • Hocine Cherifi
Article

Abstract

With the recent advances in complex networks theory, graph-based techniques for image segmentation has attracted great attention recently. In order to segment the image into meaningful connected components, this paper proposes an image segmentation general framework using complex networks based community detection algorithms. If we consider regions as communities, using community detection algorithms directly can lead to an over-segmented image. To address this problem, we start by splitting the image into small regions using an initial segmentation. The obtained regions are used for building the complex network. To produce meaningful connected components and detect homogeneous communities, some combinations of color and texture based features are employed in order to quantify the regions similarities. To sum up, the network of regions is constructed adaptively to avoid many small regions in the image, and then, community detection algorithms are applied on the resulting adaptive similarity matrix to obtain the final segmented image. Experiments are conducted on Berkeley Segmentation Dataset and four of the most influential community detection algorithms are tested. Experimental results have shown that the proposed general framework increases the segmentation performances compared to some existing methods.

Keywords

Complex networks Image segmentation Community detection 

Notes

References

  1. 1.
    Abin AA, Mahdisoltani F, Beigy H (2014) WISECODE: Wise image segmentation based on community detection. Imaging Sci J 62(6):327–336CrossRefGoogle Scholar
  2. 2.
    Arbelaez P, Maire M, Fowlkes C, Malik J (2011) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33(5):898–916CrossRefGoogle Scholar
  3. 3.
    Bao P, Zhang L, Wu X (2005) Canny edge detection enhancement by scale multiplication. IEEE Trans Pattern Anal Mach Intell 27(9):1485–1490CrossRefGoogle Scholar
  4. 4.
    Bernstein EJ, Amit Y (2005) Part-based statistical models for object classification and detection. In: 2005. CVPR IEEE computer society conference on computer vision and pattern recognition, vol 2. IEEE, p 2005Google Scholar
  5. 5.
    Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008(10):P10008CrossRefGoogle Scholar
  6. 6.
    Bo P, Zhang L, Zhang D (2013) A survey of graph theoretical approaches to image segmentation. Pattern Recog 46(3):1020–1038CrossRefGoogle Scholar
  7. 7.
    Chen X et al (2017) Image segmentation using a unified Markov random field model. IET Image ProcessingGoogle Scholar
  8. 8.
    Christoudias CM, Georgescu B, Meer P (2002) Synergism in low level vision. In: 2002 Proceedingsof the 16th international conference on pattern recognition, vol 4. IEEE, pp 150–155Google Scholar
  9. 9.
    Cigla C, Alatan AA (2010) Efficient graph-based image segmentation via speeded-up turbo pixels. In: 2010 17th ieee international conference on image processing (ICIP), (pp 3013-3016). IEEEGoogle Scholar
  10. 10.
    Cigla C, Alatan AA (2010) Efficient graph-based image segmentation via speeded-up turbo pixels. In: 2010 17th IEEE international conference on image processing (ICIP), IEEEGoogle Scholar
  11. 11.
    Clauset A, Newman ME, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):066111CrossRefGoogle Scholar
  12. 12.
    Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):066111CrossRefGoogle Scholar
  13. 13.
    Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619CrossRefGoogle Scholar
  14. 14.
    Delvenne J-C, Yaliraki SN, Barahona M (2010) Stability of graph communities across time scales. In: Proceedings of the National Academy of SciencesGoogle Scholar
  15. 15.
    Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181CrossRefGoogle Scholar
  16. 16.
    Gonzalez RC, Woods RE (2002) Digital image processingGoogle Scholar
  17. 17.
    Jianbo S, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905CrossRefGoogle Scholar
  18. 18.
    Joyce JM (2011) Kullback-leibler divergence. International encyclopedia of statistical science. Springer, Berlin, pp 720–722CrossRefGoogle Scholar
  19. 19.
    Lancichinetti A, Fortunato S (2009) Community detection algorithms: a comparative analysis. Phys Rev E 80(5):056117CrossRefGoogle Scholar
  20. 20.
    Linares OAC et al (2016) Segmentation of large images based on super-pixels and community detection in graphs. arXiv:1612.03705
  21. 21.
    Liu Y et al (2015) Action2activity: recognizing complex activities from sensor data. IJCAI, vol 2015Google Scholar
  22. 22.
    Liu Y et al (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115CrossRefGoogle Scholar
  23. 23.
    Meila M (2005) Comparing clusterings: an axiomatic view. In: Proceedings of the 22nd international conference on Machine learning (pp 577-584). ACMGoogle Scholar
  24. 24.
    Mori G (2005) Guiding model search using segmentation. In: Null (pp 1417-1423). IEEEGoogle Scholar
  25. 25.
    Newman M (2010) Networks: an introduction. Oxford University Press, OxfordCrossRefzbMATHGoogle Scholar
  26. 26.
    Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69(6):066133CrossRefGoogle Scholar
  27. 27.
    Noble JA, Boukerroui D (2006) Ultrasound image segmentation: a survey. IEEE Trans Med Imaging 25(8):987–1010CrossRefGoogle Scholar
  28. 28.
    Orman GK, Labatut V, Cherifi H (2011) On accuracy of community structure discovery algorithms. arXiv:1112.4134
  29. 29.
    Orman GK, Labatut V, Cherifi H (2011) Qualitative comparison of community detection algorithms. In: International conference on digital information and communication technology and its applications (pp 265–279). Springer, BerlinGoogle Scholar
  30. 30.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66CrossRefGoogle Scholar
  31. 31.
    Puzicha J et al (1999) Empirical evaluation of dissimilarity measures for color and textureGoogle Scholar
  32. 32.
    Ronhovde P, Nussinov Z (2010) Local resolution-limit-free Potts model for community detection. Phys Rev E 81(4):046114CrossRefGoogle Scholar
  33. 33.
    Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci 105(4):1118–1123CrossRefGoogle Scholar
  34. 34.
    Shijie L, Wu DO (2015) Modularity-based image segmentation. IEEE Trans Circuits Syst Video Technol 25(4):570–581CrossRefGoogle Scholar
  35. 35.
    Sumengen B, Bertelli L, Manjunath BS (2006) Fast and adaptive pairwise similarities for graph cuts-based image segmentation. In: 2006 CVPRW’06 conference on computer vision and pattern recognition workshop. IEEEGoogle Scholar
  36. 36.
    Trémeau A, Colantoni P (2000) Regions adjacency graph applied to color image segmentation. IEEE Trans Image Process 9(4):735–744CrossRefGoogle Scholar
  37. 37.
    Unnikrishnan R, Pantofaru C, Hebert M (2007) Toward objective evaluation of image segmentation algorithms. IEEE Trans Pattern Anal Mach Intell 29(6):929–944CrossRefGoogle Scholar
  38. 38.
    Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154CrossRefGoogle Scholar
  39. 39.
    Wani M, Batchelor BG (1994) Arif Edge-region-based segmentation of range images. IEEE Trans Pattern Anal Mach Intell 16(3):314–319CrossRefGoogle Scholar
  40. 40.
    Wright WD (1967) Color science concepts and methods. Quantitative data and formulas. Phys Bull 18(10):353CrossRefGoogle Scholar
  41. 41.
    Wu Z, Leahy R (1993) An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans Pattern Anal Mach Intell 15(11):1101–1113CrossRefGoogle Scholar
  42. 42.
    Yang A, Wright J, Ma Y, Sastry S (2008) Unsupervised segmentation of natural images via lossy data compression. Comput Vis Image Underst 110(2):212–225CrossRefGoogle Scholar
  43. 43.
    Zou Q, Bai J (2018) Interest points detection in image based on topology features of multi-level complex networks. Wirel Pers Commun 103(1):715–725CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LRIT - CNRST URAC 29, Rabat IT Center, Faculty of SciencesMohammed V University in RabatRabatMorocco
  2. 2.LRIT - CNRST URAC 29, Rabat IT Center, FLSHMohammed V University in RabatRabatMorocco
  3. 3.LE2I UMR 6306 CNRSUniversity of BurgundyDijonFrance

Personalised recommendations