Advertisement

Analysis of moving human body detection and recovery aided training in the background of multimedia technology

  • Chen XiEmail author
  • Dongbo Shi
Article
  • 3 Downloads

Abstract

Human detection and motion recovery are the hotspots in the field of artificial intelligence and computer vision. They are widely used in vehicle-assisted systems, intelligent monitoring systems, human-computer interaction, and sports training. The human body detector based on the overall feature is to calculate the feature distribution in the entire rectangular detection window, and requires most of the information of the entire human body, so the performance of this method will be significantly reduced when encountering partial occlusion or complex posture. Firstly, this paper proposes multiple parts to express the whole human body, and divides the target into several separate parts such as head, trunk and limbs, and divides and treats the individual training part classifier for the human body target of complex human posture and partial occlusion. Secondly, this paper gives a kind of a method of restoring a three-dimensional motion posture of a human body from a monocular video sequence. The experimental results show that the method can be applied to human detection with multi-pose and partial occlusion in complex background, which provides an effective technical means for human detection in complex background. At the same time, the method does not need to mark, and the recovered relative motion posture of the human body is simple and effective, the optimization result is robust, and the recovery result can satisfy the human motion posture analysis with low precision requirement.

Keywords

Moving human body Detection Recovery aided training Multimedia technology 

Notes

References

  1. 1.
    Breen EJ, Williams KL (2011) Contrast matching in a sequence of images by histogram normalization[J]. J Microsc 159(2):223–227CrossRefGoogle Scholar
  2. 2.
    Cendrillon R, Lovell B (2000) Real Time Face Recognition using Eigenfaces[J]. Visual Communications and Image Processing 1-3(4067):269–276Google Scholar
  3. 3.
    Chatterji BN (2015) Feature Extraction Methods for Character Recognition[J]. IETE Tech Rev 3(1):9–22CrossRefGoogle Scholar
  4. 4.
    Déniz O, Bueno G, Salido J et al (2011) Face recognition using Histograms of Oriented Gradients[J]. Pattern Recognition Letter 32(12):1598–1603CrossRefGoogle Scholar
  5. 5.
    Hao L, Shi SY, Zong XP (2007) Application of ART-2 neural network and invariant moment in image pattern recognition[J]. Adv Mater Res 433-440(6):4014–4019Google Scholar
  6. 6.
    Jampani V, Nowozin S, Loper M et al (2015) The informed sampler: A discriminative approach to Bayesian inference in generative computer vision models[J]. Computer Vision & Image Understanding 136:32–44CrossRefGoogle Scholar
  7. 7.
    Kabsch W, Sander C (2010) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features.[J]. Biopolymers 22(12):2577–2637CrossRefGoogle Scholar
  8. 8.
    Kamble PM, Hegadi RS (2015) Handwritten Marathi Character Recognition Using R-HOG Feature[J]. Procedia Computer Science 45:266–274CrossRefGoogle Scholar
  9. 9.
    Liang F, Tang S, Zhang Y et al (2014) Pedestrian detection based on sparse coding and transfer learning[J]. Mach Vis Appl 25(7):1697–1709CrossRefGoogle Scholar
  10. 10.
    Loce RP (2013) Special Section Guest Editorial: Video Surveillance and Transportation Imaging[J]. Journal of Electronic Imaging 22(4):041101CrossRefGoogle Scholar
  11. 11.
    López-Nava IH, Munoz-Meléndez A (2016) Wearable Inertial Sensors for Human Motion Analysis: A Review [J]. IEEE Sensors J 16(22):7821–7834CrossRefGoogle Scholar
  12. 12.
    Luciw MD, Kompella VR, Kazerounian S et al (2013) An Intrinsic Value System for Developing Multiple Invariant Representations with Incremental Slowness Learning[J]. Front Neurorobot 7:9CrossRefGoogle Scholar
  13. 13.
    Moreno-Garcia J, Rodriguez-Benitez L, Fernández-Caballero A et al (2010) Video sequence motion tracking by fuzzification techniques[J]. Appl Soft Comput 10(1):318–331CrossRefGoogle Scholar
  14. 14.
    Nie X, Pan Z, Zhang D et al (2014) Energy Detection Based on Undecimated Discrete Wavelet Transform and Its Application in Magnetic Anomaly Detection[J]. PLoS One 9(10):e110829CrossRefGoogle Scholar
  15. 15.
    Sinopoli B, Schenato L, Franceschetti M et al (2004) Kalman filtering with intermittent observations[J]. IEEE Trans Autom Control 1(9):1453–1464MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wang XY, Liang LL, Li YW et al (2017) Image retrieval based on exponent moments descriptor and localized angular phase histogram[J]. Multimedia Tools & Applications 76(6):7633–7659CrossRefGoogle Scholar
  17. 17.
    Yang FY, Yang HY, Li YW et al (2014) Content-based image retrieval using local visual attention feature[J]. Journal of Visual Communication & Image Representation 25(6):1308–1323CrossRefGoogle Scholar
  18. 18.
    Zhang S, Liu F, Cao X et al (2010) Monocular Vision-based Two-stage Iterative Algorithm for Relative Position and Attitude Estimation of Docking Spacecraft[J]. Chin J Aeronaut 23(2):204–210CrossRefGoogle Scholar
  19. 19.
    Zhao S, Shmaliy YS, Liu F (2016) Fast Kalman-Like Optimal Unbiased FIR Filtering With Applications[J]. IEEE Trans Signal Process 64(9):2284–2297MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physical EducationTaiyuan University of TechnologyTaiyuan CityPeople’s Republic of China
  2. 2.Woosuk UniversityJeonjuSouth Korea

Personalised recommendations