Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 14, pp 19061–19080 | Cite as

Salient object detection using the phase information and object model

  • Hooman AfshariradEmail author
  • Seyed Alireza Seyedin
Article
  • 380 Downloads

Abstract

One of the most important features of saliency detection algorithms is to reduce the size of processing data for algorithms with higher processing size such as object detection algorithms. A main condition for algorithms of saliency detection to be used in detecting the object in the image is their low processing size and broadness of the application extent while having acceptable precision. In this article we introduce a Salient Object Detection method using Task Simulation (SOD-TS). This method has a low processing size and wide functional domain using task simulation (object model). Our proposed method has a wide range of application including ship detection, words and letter detection in texts, etc. Relying on the task simulation (object model), SOD-TS method detects the salient object which is the best response to the current task. It uses the information of the frequency domain.

Keywords

Salient regions detection Fourier transform (FT) phase Frequency domain Object detection Ship detection Optical character recognition (OCR) Task simulation 

Notes

References

  1. 1.
    Achanta R, Susstrunk S (2010) Saliency detection using maximum symmetric surround. IEEE ICIP: 2653–2656Google Scholar
  2. 2.
    Achanta R, Estrada F, Wils P, Susstrunk S (2008) Salient region detection and segmentation. Comp Vis SysGoogle Scholar
  3. 3.
    Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned salient region detection. IEEE CVPRGoogle Scholar
  4. 4.
    Aiger D, Talbot H (2010) The phase-only transform for unsupervised surface defect detection. Computer Vision and Pattern Recognition (CVPR) IEEE ConferenceGoogle Scholar
  5. 5.
    Aytekin C, Kiranyaz S, Gabbouj M (2014) Automatic object segmentation by quantum cuts. IEEE ICPR: 112–117Google Scholar
  6. 6.
    Bhatnagar G, Wu QMJ, Raman B (2013) Discrete fractional wavelet transform and its application to multiple encryption. Inf Sci 223:297–316MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Borji A et al (2015) Salient object detection: a benchmark. IEEE Trans Image Process 24(12)Google Scholar
  8. 8.
    Borji A, Itti L (2013) State-of-the-art in visual attention modeling. IEEE Trans Pattern Anal Mach Intell 35(1)Google Scholar
  9. 9.
    Borji A, Sihite DN, Itti L (2013) What stands out in a scene? A study of human explicit saliency judgment. Vis Res 91(0):62–77CrossRefzbMATHGoogle Scholar
  10. 10.
    Chang K-Y, Liu T-L, Chen H-T, Lai S-H, (2011) Fusing generic objectness and visual saliency for salient object detection. IEEE ICCV: 914–921Google Scholar
  11. 11.
    Chen T, Lin L, Liu L, Luo X, Li X (2016) Deep image saliency computing via progressive representation learning. IEEE Trans Neural Netw Learn Syst 27(6):1135MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cheng M-M, Warrell J, Lin W-Y, Zheng S, Vineet V, Crook N (2013) Efficient salient region detection with soft image abstraction. IEEE ICCV: 1529–1536Google Scholar
  13. 13.
    Cheng M-M et al. (2015) Global contrast based salient region detection. IEEE TPAMIGoogle Scholar
  14. 14.
    Cheng M-M, Mitra NJ, Huang X, Torr PHS, Hu S-M (2015) Global contrast based salient region detection. IEEE TPAMIGoogle Scholar
  15. 15.
    Duan L, Wu C, Miao J, Qing L, Fu Y (2011) Visual saliency detection by spatially weighted dissimilarity. IEEE CVPR: 473–480Google Scholar
  16. 16.
    Goferman S, Zelnik-Manor L, Tal A (2012) Context-aware saliency detection. IEEE TPAMI 34(10):1915–1926CrossRefGoogle Scholar
  17. 17.
    Gue C, Ma Q, Zhang L (2008) Spatiotemporal saliency detection using phase spectrum of quaternion Fourier transform. Proc IEEE Int Conf Comput Vision Pattern RecognGoogle Scholar
  18. 18.
    Hou X, Zhang L (2007) Saliency detection: a spectral residual approach. Proc IEEE Int Conf Comput Vision Pattern Recogn,: 1–8Google Scholar
  19. 19.
    Jiang H, Wang J, Yuan Z, Liu T, Zheng N, (2011) Automatic salient object segmentation based on context and shape prior. BMVCGoogle Scholar
  20. 20.
    Jiang B, Zhang L, Lu H, Yang C, Yang M-H (2013) Saliency detection via absorbing markov chain. IEEE ICCVGoogle Scholar
  21. 21.
    Jiang P, Ling H, Yu J, Peng J (2013) Salient region detection by ufo: uniqueness, focusness and objectness. IEEE ICCVGoogle Scholar
  22. 22.
    Kim J, Han D, Tai Y-W, Kim J (2014) Salient region detection via high-dimensional color transform. IEEE CVPRGoogle Scholar
  23. 23.
    Lee G, Tai YW, Kim J (2016) Deep saliency with encoded low level distance map and high level features. 2016 IEEE Conf Comput Vision Pattern Recognition (CVPR): 660–668Google Scholar
  24. 24.
    Li G, Yu Y (2015) Visual saliency based on multiscale deep features. Computer Vision and Pattern Recognition: 5455–5463Google Scholar
  25. 25.
    Li J, Levine MD, An X (2007) IEEE Transactions on Pattern Analysis and Machine Intelligence. Class files 6(1)Google Scholar
  26. 26.
    Li X, Li Y, Shen C, Dick AR, van den Hengel A (2013) Contextual hypergraph modeling for salient object detection. IEEE ICCV: 3328–3335Google Scholar
  27. 27.
    Li X, Lu H, Zhang L, Ruan X, Yang M-H (2013) Saliency detection via dense and sparse reconstruction. IEEE ICCVGoogle Scholar
  28. 28.
    Li J, Levine MD, An X, Xu X, He H (2013) Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans Pattern Anal Mach Intell 35(4):996–1010CrossRefGoogle Scholar
  29. 29.
    Liu N, Han J (2018) A deep spatial contextual long-term recurrent convolutional network for saliency detection. IEEE Trans. Image ProcessGoogle Scholar
  30. 30.
    Liu Z, Zou W, Le Meur O (2013) Saliency tree: a novel saliency detection framework. IEEE TIPGoogle Scholar
  31. 31.
    Margolin R, Tal A, Zelnik-Manor L (2013) What makes a patch distinct?. IEEE CVPR: 1139–1146Google Scholar
  32. 32.
    Margolin R, Zelnik-Manor L, Tal A (2013) Saliency for image manipulation. Vis Comput: 1–12Google Scholar
  33. 33.
    Movahedi V, Elder JH (2010) Design and perceptual validation of performance measures for salient object segmentation. IEEE CVPRWGoogle Scholar
  34. 34.
    Perazzi F, Krahenbuhl P, Pritch Y, Hornung A (2012) Saliency filters: contrast based filtering for salient region detection. IEEE CVPR: 733–740Google Scholar
  35. 35.
    Rahtu E, Kannala J, Salo M, Heikkila J (2010) Segmenting salient objects from images and videos. ECCVGoogle Scholar
  36. 36.
    Siva P, Russell C, Xiang T, Agapito L (2013) Looking beyond the image: unsupervised learning for object saliency and detection. IEEE CVPR: 3238–3245Google Scholar
  37. 37.
    Tavakoli HR, Rahtu E, Heikkila J (2011) Fast and efficient saliency detection using sparse sampling and kernel density estimation. Scandinavian conference on image analysis: 666–675Google Scholar
  38. 38.
    Tong N, Lu H, Ruan X, Yang M-H (2015) Salient object detection via bootstrap learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 1884–1892Google Scholar
  39. 39.
    Tong N, Lu H, Zhang Y, Ruan X (2015) Salient object detection via global and local cues. Pattern Recogn 48(10):3258–3267CrossRefGoogle Scholar
  40. 40.
    Wang J, Lu H, Li X, Tong N, Liu W (2015) Saliency detection via background and foreground seed selection. Neurocomputing 152:359–368CrossRefGoogle Scholar
  41. 41.
    Wang L, Lu H, Xiang R, Yang MH (2015) Deep networks for saliency detection via local estimation and global search. Comput Vision Pattern Recogn: 3183–3192Google Scholar
  42. 42.
    Wang J, Jiang H, Yuan Z, Cheng M-M, Hu X, Zheng N (2017) Salient object detection: a discriminative regional feature integration approach. Int J Comput Vis 123(2):251–268CrossRefGoogle Scholar
  43. 43.
    Xie Y, Lu H, Yang M-H (2013) Bayesian saliency via low and mid-level cues. IEEE TIP 22(5)Google Scholar
  44. 44.
    Yang C, Zhang L, Lu H, Ruan X, Yang M-H (2013) Saliency detection via graph-based manifold ranking. IEEE CVPRGoogle Scholar
  45. 45.
    Yang C, Zhang L, Lu H (2013) Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Process Lett 20(7):637–640CrossRefGoogle Scholar
  46. 46.
    You X, Du L, Cheung Y-m, Chen Q (2010) A blind watermarking scheme using new nontensor product wavelet filter banks. IEEE Trans Image Process 19(12):3271–3284MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Zhang J et al (2018) Top-down neural attention by excitation backprop. Int J Comput Vis 126:1084–1102CrossRefGoogle Scholar
  48. 48.
    Zhu D (2018) Salient object detection via a local and global method based on deep residual network. J Vis Commun Image Represent 54Google Scholar
  49. 49.
    Zhu W, Liang S, Wei Y, Sun J (2014) Saliency optimization from robust background detection. IEEE CVPRGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019
corrected publication 2019

Authors and Affiliations

  1. 1.Khorasan Institute of Higher EducationMashhadIran
  2. 2.Faculty of EngineeringFerdowsi University of MashhadMashhadIran

Personalised recommendations